
The Impact of Bug Management Patterns on Bug
Fixing: A Case Study of Eclipse Projects

Masao Ohira
Wakayama University

masao@sys.wakayama-u.ac.jp

Ahmed E. Hassan
Queen’s University

ahmed@cs.queensu.ca

Naoya Osawa
and Ken-ichi Matsumoto

Nara Institute of Science and Technology
{naoya-osa, matumoto}@is.naist.jp

Abstract—An efficient bug management process is critical for
the success of software projects. Prior work has focused on
improving this process, for example, by automating bug triaging,
detecting duplicate bugs, and understanding the rationale for re-
opening bugs. This paper continues this line of work by exploring
the people who are involved in the bug management process.
In particular we develop four patterns that distill the different
relations between the people involved in the process: the reporter,
triager, and fixer of a bug. Through a case study on the Eclipse
Platform and JDT projects, we demonstrate that these patterns
have an impact on the efficiency of the bug management process.
For example, we find that using our patterns project personnel
can improve their efficiency through better communication about
bugs before assigning them.

I. INTRODUCTION

An efficient bug management process (reports, assignment
and fixing) is critical for the success of software projects.
Software projects use a Bug Tracking System (BTS) (e.g.,
Bugzilla [1]) to manage and keep track of bug management
tasks efficiently. However, as the user base grows, some
large open source projects such as the Eclipse and Mozilla
projects have been faced with complex challenges to their bug
management process, since they receive a large number of
(sometimes over several hundred) bug reports on a daily basis.

Developers must understand a new report, figure out if it
is a real bug and whether it was reported in the past (i.e.,
duplicate bug), and assign it to the most appropriate person to
fix the bug quickly. Correct bug triaging is very challenging.
In fact, 44% of bugs in the Eclipse project are reassigned to
more than one developer [2].

To improve the bug management process, prior work pro-
posed several promising approaches, for example, automating
bug triaging [2]–[4], detecting duplicate bugs [5]–[7], and
understanding the rationale for the reassigning and re-opening
of bugs [8]–[10]. This paper continues this line of work of
exploring the bug assignment phase within the bug-fixing
process. In particular we develop four different patterns that
distill the different relations between the people involved in
the bug management process: the reporter, triager, and fixer
of a bug.

We suspect that the efficiency of the bug management
process should depend on our patterns which we call bug
management patterns. These patterns account for the different
individuals assigned to the management process of a bug

(reporter, triager, and fixer). To our knowledge, this is the first
attempt to empirically study the impact of interaction patterns
between the people in the bug management process on bug
fixing, especially in terms of the time to assign bug fixing
tasks and the time to fix a bug.

Through a case study on the Eclipse Platform and JDT
projects, we demonstrate that these patterns have an impact
on the efficiency of the bug management process as follows.

1) As the number of individuals involved in the process
increases, the time to fix a bug increases. For example,
the time to fix a bug (reported, triaged and fixed by three
different individuals) takes around 2–3 times longer
compared to other patterns. In some cases, these bugs
are fixed quite fast. A manual analysis of the data shows
that in such cases there was a large amount of discussion
about the bug and the most suitable individuals to fix it.

2) Surprisingly if the individual triaging a bug ends up
assigning it to himself for fixing, the bug assignment
(to himself) takes 1.5-2 times longer. We believe this is
often likely due to the triaging doing the self-assignment
as a last resort. In the JDT project, we found that the
team has a process in place to fast track the fixing of
such bugs to offset the lengthier assignment time.

Our results highlight the importance of social and knowl-
edge sharing factors on the bug management process. We note
the need for better tools to facilitate the knowledge sharing and
communication between project personnel. We also believe
that researchers would benefit from integrating such social
knowledge (i.e., roles and individuals) in their software quality
models, in particular, models to predict the fix time of bugs.

The rest of the paper is organized as follows. Section II
describes related work and motivation of this study. Section III
shows the results of a pilot study that we conducted to under-
stand the impact of different individuals playing different roles
in the bug management process. Section IV introduces our
bug management patterns which capture the relations among
the individuals involved in the process. Section V presents
the results of our case study. We discuss the contributions of
the study based on our findings and the threats to validity in
Section VI. Section VII concludes the paper.

II. RELATED WORK AND MOTIVATION

Most existing studies focus on how to reduce the time to
fix bugs as this time continues to increase especially in large978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

Open Source projects. There are currently three promising
approaches to improving the bug management process. In
what follows, we describe the existing approaches and the
motivation for our study.

A. How to make a good bug report?

A good bug report helps reduce the time to fix bugs. A
good report helps developers to quickly find, replicate, and
understand the bugs at hand. However developers’ information
needs in bug reports are often unsatisfied, since users do not
know what information are required to fix a problem. Users
rarely articulate the problem sufficiently for developers to fix
them. For instance, users rarely report procedures to reproduce
an error (e.g., sometimes they just say “This option does not
work on my computer!”). Therefore, developers have to ask
users to give more information again and again to identify and
fix the problem.

In order to improve the cooperation on a bug report between
developers and users, many studies [11]–[16] have interviewed
developers to understand their information needs for effective
bug fixing. For example, through interviews with over 150
developers and 300 reporters of the Apache, Eclipse and
Mozilla projects, Bettenburg et al. [12], [16] found that steps
to reproduce and stack traces are very essential for bug reports.

B. Detection of duplicate bug reports

Users often report problems reported by other users in the
past or that have already been fixed by developers. Developers
also sometimes try to resolve the same problem which had
been previously resolved. This can happen because there are
a large number of bug reports in BTS. Both the users and
developers cannot be aware of all the reported bugs though
the provided search functionalities. In this manner, the bugs
are duplicated in BTS. This results in wasting developers’ time
and efforts.

To avoid duplicate bug reports in BTS, several studies [5]–
[7], [17] have tried to detect duplicate bug reports automati-
cally. For example, Wang et al. [7] presented an approach to
detect duplicate bugs, applying a natural language processing
technique to bug report data in BTS.

C. Re-opening and reassigning of bug reports

Even if a bug fixing task is assigned to one developer, it
may not be completed by the developer instead it might get
reassigned (tossed [2]) to other developers. This often happens
because a triager assigns the task to an inappropriate developer
who does not have sufficient knowledge and skill to complete
the task. In the Eclipse and Mozilla projects, 37% to 44%
of bugs are reassigned to another developer [2]. Preventing
the bug tossing (ensuring the assignment of a bug fixing task
to the most appropriate developer) is a very effective way to
reduce the time needed to fix bugs.

Several approaches [2]–[4], [8]–[10], [18]–[20] have tackled
this issue. For instance, Anvik et al. [3] proposed an approach
to assign a bug to an appropriate developer based on past
bug reports data using natural language processing techniques.

Bug reportedUNCONFIRMED
Reporter FixerTriager

NEW ASSIGNEDAccepted as a bug Assigned to fix RESOLVEDBug fixedFIXEDTime to assign a bug (Tassignment) Time to fix a bug (Tbug-fix)
TOSSED

Fig. 1. A bug management process

Jeong et al. [2] proposed a method for the bug assignment
based on a social graph which captures the social relation-
ships among developers in the bug assignment phase. Other
approaches involve understanding the rational for multiple
reassignments [8] and creating methods to predict which bugs
are likely to be reopened [9], [10].

D. People in the bug management process: our motivation

As described above, prior studies have applied various data
mining techniques to bug report data in BTS in order to
support the bug management process, since the goal of existing
studies, as previously described, is to reduce the time to fix
bugs by providing means to write good bug reports [12], [14]–
[16], finding adequate fixers for bug fixing tasks [2], [3], [18],
and preventing redundant work for duplicated bug reports [5]–
[7], [17].

In this study, we would like to create a new understanding
of the bug management process by closely looking at the indi-
viduals involved in the process and the impact of the relations
between the individuals on the efficiency of the bug fixing
process. Figure 1 shows a typical bug management process
with BTS such as Bugzilla [1]. In open source development
with BTS, at least three types of individuals are involved in the
bug management process: bug reporter, triager, and fixer of
a bug. A bug reporter is a user or developer who reports
a bug. A triager is often a senior developer who has the
authority to assign a bug fixing task to other developers in
the project. A fixer is a developer who fixes a bug that was
assigned to him or her.

In this process, the triager obviously plays a very important
role because she or he needs to have a good understanding of
the bug report at hand and must assign the bug fixing task to
the most appropriate developer who can fix the bug as quickly
as possible. The triager can also be a reporter and/or a fixer.
In such a case, the efficiency of the bug management process
should be different from the case where each role is played
by a different individual. Therefore we aim at establishing a
clear understanding of the relation between the roles and the
consequences of having different individuals in these roles on
the bug fixing and management processes.

clearpage
While previous studies have mainly focused on reducing the

time to fix bugs (Tfix), we are interested in both Tassignment

(time to assign a bug fixing task to a fixer) and Tfix.

TABLE I
RESULTS OF OUR PILOT STUDY ON THE TIME TO ASSIGN BUG REPORTS TO FIXERS (Tassignment) IN PLATFORM AND JDT

project Reporter = # of ratio average median SD max min P-valueTriager ? reports days days days days

Platform yes 1,000 24.2% 12.6 0.0 66.8 812.1 0.0
< 0.01 ∗ ∗no 3,133 75.8% 15.2 0.5 68.9 842.9 0.0

JDT yes 452 27,3% 10.6 0.0 57.8 713.7 0.0
< 0.01 ∗ ∗no 1,205 72.7% 20.0 0.5 79.6 927.0 0.0

TABLE II
RESULTS OF OUR PILOT STUDY ON THE TIME TO FIX BUGS (Tfix) IN PLATFORM AND JDT

project Triager = # of ratio average median SD max min P-valueFixer ? reports days days days days

Platform yes 2,294 55.5% 23.1 1.2 65.3 776.0 0.0
< 0.01 ∗ ∗no 1,839 44.5% 46.9 5.9 111.1 988.2 0.0

JDT yes 817 49.3% 12.6 0.8 42.9 583.1 0.0
< 0.01 ∗ ∗no 840 50.7% 22.8 1.3 62.8 705.9 0.0

III. PILOT STUDY ON THE TIME TO ASSIGN AND FIX BUGS

This section reports the results of our pilot study on the
relation between the people involved in the bug management
process and its impact on the efficiency of the bug fixing
process.

A. Time to assign a bug fixing task

In our pilot study, we first tried to answer the following
research question.

RQ1: Does the time to assign a bug fixing task depend
on the fact that the same developer reports a bug and
triages it?

Motivation: Users as bug reporters occasionally cannot
write good bug reports for developers. There are often
mismatches between the information provided by users and
the information triagers need to assign bug fixing tasks to
appropriate fixers. This is one reason for lengthy Tassignment

because triagers spend considerable time to understand a filed
bug.

In contrast, triagers can be bug reporters. In this case, the
mismatches would be minimal and Tassignment would be
shorter than the case of bug reports by users because triagers
are also developers who probably know what information is
needed to fix bugs and also might know who could fix the bugs
quickly. In short, we believe that Tassignment largely depends
on the reporter-triager relationship.
Approach: We collected bug reports data from two large open
source projects: Eclipse Platform and Eclipse JDT projects.
After cleaning the data, using the techniques described in [21],
[22] to avoid counting the same individual with multiple email
addresses as different individuals, we checked whether a bug
reporter and a triager are the same individual or not. If an
individual plays both the roles of a reporter and a triager,
we considered him/her as a senior developer. If not (reporter
6= triager), it is likely that a reporter is a user or a junior
developer.

We filtered the data to focus on bug reports which were fixed
without reassignments since we would like to simplify the
data analysis to better capture the phenomenon. After the data
filtering, we measured the average and median time (days) of
Tassignment and tested the differences of Tassignment between
individuals’ roles (i.e., whether reporters are triagers or not)
using the Mann–Whitney U test (α = 0.05).
Results: Table I shows the results of our analysis. We
found that there were statistically significant differences in
Tassignment in both projects. We also found that around 25%
of the individuals in the projects were developers (reporter =
triager) and that the average time of assignments of bug reports
from developers is about 17–47% faster (2.6 days in Platform
and 9.4 days in JDT), than that of assignments of bug reports
from users. This result indicates that the assignment time for
reports from users is a challenge for both Eclipse projects.�

�
	The time to assign a bug fixing task depends on the fact

that the same developer reports a bug and triages it.

B. Time to fix a bug

We were also interested in answering the following research
question on the time to fix a bug (Tfix).

RQ2: Does the time to fix a bug depend on the
fact that the same developer triages a bug and fixes it?

Motivation: Even if a triager were to quickly find a
fixer to assign a bug fixing task (i.e., Tassignment is
short), Tfix can be lengthy because there might exist other
mismatches between the knowledge and/or the skills of the
fixer and those needed to fix the bug. Jeong et al. [2] studied
the “tossing (reassignment)” process to explore this issue. We
further suspected the mismatches also happen even if a bug is
not tossed to several fixers (i.e., if a bug is fixed by a single
fixer). To better understand the impact of the mismatches on
the time to fix bugs, we analyze Tfix without reassignments
in the bug management process.
Approach: Using the cleaned and filtered bug report data

in RQ1, we looked at whether a triager and a fixer are the
same individual (triager = fixer) or not (triager 6= fixer). We
then measured the average and median time (days) of Tfix
and tested the differences of Tfix with the Mann–Whitney
U test (α = 0.05). Note that our data did not include the
“tossing” process where reassignment of a bug fixing task is
required several times, in order to focus on the influence of
the triager-fixer relationship. We only used bug reports that
were “FIXED” by a single fixer.
Results: Table II shows the results of our analysis on Tfix
for both projects. We found that there were significant
differences in Tassignment for both projects. Around 50% of
the individuals in the projects played both roles of triager
and fixer. The average time of bug fixing by triagers was
about two times faster (23.8 days in Platform and 10.2 days
in JDT), than that by fixers (regular developers).�

�
	The time to fix a bug depends on the fact that the same

developer triages a bug and fixes it.

These results of our pilot study motivate us to dig deeper in
the relationships among the individuals (reporter, triager, and
fixer) involved in the bug management process.

IV. BUG MANAGEMENT PATTERNS

In our pilot study from the previous section, we studied
the two types of pairs of individuals (i.e., reporter-triager and
triager-fixer) in the bug management process and analyzed
the relationships between the types and the time (Tassignment

and Tfix). Although the results of the analysis provided clear
understandings of the relationships between them, the results
encouraged us to investigate the combined consequence of all
three roles on Tassignment and Tfix.

In this section we introduce the bug management patterns
which provide us with a framework to study the bug manage-
ment process and its impacts on bug fixing (i.e., Tassignment

and Tfix). The patterns are defined by combinations of the
individual roles (i.e., bug reporter, triager, and fixer). Figure 2
illustrates the four patterns.

Pattern #1: Reporter=Triager=Fixer [R=T=F]
In this pattern, a single individual plays all the roles (i.e.,
reporter, triager, and fixer of the bug). The patterns [R=T=F]
is assumed to make bug fixing faster since the individual likely
knows the bug source and has good confidence in his ability
to fix the bug.

Pattern #2: Reporter=Triager 6=Fixer [R=T6=F]
In this pattern, one individual (A) has the roles of both reporter
and triager, and another individual (B) fixes the bug as a
fixer. The pattern [R=T6=F] is assumed to make the bug
assignment faster as shown previously in the result of RQ1
because individual (A) would be a developer who is authorized
to assign the bug. In contrast, the pattern [R=T6=F] might
make bug fixing inefficient such as the case of the Eclipse
projects in RQ2 because the individual (B) as a fixer might

Reporter=Triager=Fixer (R=T=F)One contributor plays all of the roles.

Reporter=Triager≠Fixer (R=T≠F)One contributor (reporter and triager) asks another contributor (fixer) to fix a bug.

Reporter≠Triager=Fixer (R≠T=F)One contributor serves as triager and fixer.

Reporter≠Triager≠Fixer (R≠T≠F)Each contributor has a different role from others.

A
A

A
reporter fixer

triager RESOLVED RESOLVEDA
B

B
reporter fixer

triager

A
A

B
reporter fixer

triager RESOLVED A
B

C
reporter fixer

triager RESOLVED
Fig. 2. Four patterns of bug management process

be just entrusted by the individual (A) who does not have
the knowledge nor the skills of the individual (B). Of course,
even in this pattern, bug fixing can be done efficiently if the
individual (A) is capable of correctly assigning bug reports
to a fixer, that means the individual (A) is well aware of the
knowledge and skills of individual (B) and that the skills match
the ones needed for fixing the bug.

Pattern #3: Reporter 6=Triager=Fixer [R6=T=F]
In this pattern, one individual (A) reports a bug and another
individual (B) assigns the bug report to herself as to fix. As
opposed to the pattern [R=T6=F], the pattern [R6=T=F] is
assumed to make the bug assignment difficult as shown pre-
viously in the result of RQ1. The pattern [R 6=T=F], however,
would make bug fixing itself faster if the individual (B) has
a good understanding of the bug based on the report by the
individual (A); otherwise it would make bug fixing difficult
because the individual (B) has to spend the time to investigate
the bug.

Pattern #4: Reporter 6=Triager 6=Fixer [R6=T6=F]
In this pattern, three different individuals play each of the
roles in the process. This pattern is assumed to make both
the bug assignment and bug fixing most difficult because
the mismatches of knowledge and skills between reporters
and triagers and between triagers and fixers would be larger
than that of the other patterns. The pattern [R6=T 6=F] depends
heavily on the collective and collaborative efforts in an open
source project. In practice, it is well known that open source
systems are created by a considerable amount of efforts from a
minority of individuals [23]. In this paper we wish to confirm
the difficulty of “team work” in the bug management process
and to find hints to overcome it.

V. A CASE STUDY ON BUG MANAGEMENT PATTERNS

This section describes our analysis on the bug management
patterns in Eclipse projects. We use the same data set used in
our pilot study.

TABLE III
DATA SETS COLLECTED FROM THE ECLIPSE PLATFORM AND JDT PROJECTS

project study period # of bug reports # of fixed bug reports # of fixed bug reports # of # of # of
in total with reassignment without reassignment reporters triagers fixers

Platform Jan. 2007 - Dec. 2009 21,308 8,434 4,133 811 54 85
JDT Jan. 2007 - Dec. 2009 8,110 3,343 1,657 369 23 33

TABLE IV
RATIO OF BUG MANAGEMENT PATTERNS IN PLATFORM AND JDT

project pattern ratio

Platform

R=T=F 17% (719/4,133)
R=T6=F 7% (281/4,133)
R6=T=F 38% (1,575/4,133)
R6=T6=F 38% (1,558/4,133)

JDT

R=T=F 14% (241/1,657)
R=T6=F 13% (211/1,657)
R6=T=F 35% (576/1,657)
R6=T6=F 38% (629/1,657)

A. Data sets

Table III-B shows the basic statistics of the bug report data
sets we collected. The bugs were reported and fixed from 2007
to 2009. We did not use any data of bug reports which had been
still OPEN (= not fixed) during the studied period. We got
fixed bugs with reassignments (8,434 in Platform and 3,343 in
JDT) and fixed bugs without reassignments (4,133 and 1,657),
though we did not use fixed bugs with reassignment for our
case study due to the reason mentioned in Section III. We can
see that about one-third of reported bugs were fixed without
reassignment. We can also see that the number of bug reporters
is about 10-15 times larger than the number of triagers and
fixers.

Figure IV shows the ratio of the bug management patterns
in each project. [R 6=T=F] and [R6=T6=F] are the dominant
bug management patterns in both projects. Surprisingly, both
patterns exhibit similar ratio around 35–38%. Only 17% in
Platform and 14% in JDT are fixed through [R=T=F]. We
expect the pattern [R=T=F] is the most optimal circumstance
of the bug management process as there is no need for
knowledge sharing between the involved individuals.

B. Bug management patterns and time for task assignment

Using our patterns, we aim to answer the following
research question.

RQ3: How do the bug management patterns impact
the time to complete bug assignments?

Motivation: As we showed in Table I, the time to assign a
bug fixing task (Tassignment) depended on whether a bug
reporter played the role of a triager. However, in our pilot
study we did not consider if the triager also fixed the bug
(i.e., we did not distinguish between [R=T=F] and [R=T6=F]
and between [R 6=T=F] and [R6=T6=F].)
Approach: Similar to our pilot study, we measure the average
and median time (days) of Tassignment in each pattern and
test the differences of Tassignment between the patterns using

the Mann–Whitney U test (α = 0.05). We also calculate the
cumulative percentage of assigned bug reports to look at how
bug report assignments in each pattern are completed over
time.
Results: Table V-A and Figure 3 are the analysis result
of the relationship between the bug management patterns
and Tassignment. As we expected before the analysis,
[R=T=F] showed the best performance in assigning bug
fixing tasks in the Platform project, but the best pattern
in JDT was [R=T6=F]. However we could not confirm the
statistically significance of the difference between [R=T=F]
and [R=T6=F] in JDT.

Against our expectations, there were no differences between
[R 6=T=F] and [R 6=T6=F] in the Platform project. Furthermore
we could confirm the statistically significant difference in JDT,
surprisingly this means that the performance in [R6=T6=F] was
significantly superior to that in [R 6=T=F]. Figure 4 shows the
required days to assign all the bug fixing tasks to individuals
in Platform and JDT. In fact, [R 6=T6=F] did not show the worst
performance, rather [R 6=T=F] is around 48%–58% slower
than [R6=T6=F] on average days.

This result is also complemented by Table V-C which shows
the days required to assign the majority (80%) of bug reports
to individuals in each pattern. We suspect that this phenomena
likely happened when a triager in [R 6=T=F] tried to ask a fixer
to take a bug fixing task but cannot get any response from the
fixer (or cannot find an adequate fixer), then he or she finally
assigns the task to himself or herself.�

�
	The bug management patterns impact the performance

of assigning a bug-fixing task.

C. Bug management patterns and time for bug fixing

Next, we aim to answer the following research question.

RQ4: How do the bug management patterns impact
the time to fix bugs?

Motivation: In RQ2, we did not consider who reports
a bug when studying Tfix. If a bug reporter is an end-user,
he might not produce a good bug report to expedite the bug
fixing. We expect that using our bug management patterns we
would bring us better understanding of the bug management
process in Eclipse projects.
Approach: Same as our pilot study, we measure the average
and median time (days) of Tfix in each pattern and then
test the differences between the patterns using the Mann–
Whitney U test (α = 0.05). We also calculate the cumulative

TABLE V
RESULTS OF THE ANALYSIS ON THE BUG MANAGEMENT PATTERNS AND Tassignment IN THE ECLIPSE PLATFORM AND JDT PROJECTS

project Assignment median average SD max min P-value
pattern days days days days R=T 6=F R6=T=F R6=T6=F

Platform

R=T=F 0.00 12.28 71.50 812.05 0.00 < 0.01 ∗ ∗ < 0.01 ∗ ∗ < 0.01 ∗ ∗
R=T 6=F 0.00 13.27 53.06 512.98 0.00 - < 0.01 ∗ ∗ < 0.01 ∗ ∗
R6=T=F 0.48 20.41 82.35 842.93 0.00 - - 0.61
R6=T 6=F 0.53 9.99 51.00 842.93 0.00 - - -

JDT

R=T=F 0.00 14.33 75.48 713.66 0.00 0.59 < 0.01 ∗ ∗ < 0.01 ∗ ∗
R=T 6=F 0.00 6.32 25.18 237.06 0.00 - < 0.01 ∗ ∗ < 0.01 ∗ ∗
R6=T=F 0.69 25.45 93.67 927.05 0.00 - - < 0.01 ∗ ∗
R6=T 6=F 0.32 14.96 63.79 638.23 0.00 - - -Platform JDT

R=T=F R=T≠F R≠T=F R≠T≠F R=T=F R=T≠F R≠T=F R≠T≠F
Tassignment(
days)

Tassignment(
days)

Fig. 3. Boxplot of the bug management patterns and Tassignment in Platform and JDTPlatform JDT

days (log scale) days (log scale)
Ratio of as
signed bug

Ratio of as
signed bug

R=T=FR=T≠FR≠T=FR≠T≠F R=T=FR=T≠FR≠T=FR≠T≠F
Fig. 4. Required days to assign bug reports in Platform and JDT

TABLE VI
REQUIRED DAYS TO ASSIGN THE MAJORITY (80%) OF BUG REPORTS

R=T=F R=T6=F R6=T=F R6=T 6=F
Platform 0.02 1.23 6.15 3.45

JDT 0.56 0.82 6.34 3.38

percentage of fixed bugs over time.
Results: Table V-C and Figure 5 show the analysis result

of the relationship between the bug management patterns
and Tfix. We can see that there are the differences at 1%

significant level between [R 6=T6=F] and other patterns in
Platform and JDT. This implies that “team work” in the bug
management process is much difficult due to communication
overhead and/or miscommunication among stakeholders.

Figure 6 shows the days required to fix all the bugs in the
projects. In the both projects, the bug fixing performance in the
pattern [R6=T6=F] is apparently the worst. This result is also
complemented by Table V-C which shows the days required
to fix the majority (80%) of bugs in each pattern.

From Figure 6 and Table V-C, we see that surprisingly the
pattern [R6=T=F] in the JDT project has the best performance.

TABLE VII
RESULTS OF THE ANALYSIS ON THE BUG MANAGEMENT PATTERNS AND Tfix IN THE ECLIPSE PLATFORM AND JDT PROJECTS

project Assignment median average SD max min P-value
pattern days days days days R=T 6=F R6=T=F R6=T 6=F

Platform

R=T=F 1.00 18.17 50.75 434.80 0.00 < 0.01 ∗ ∗ 0.11 < 0.01 ∗ ∗
R=T6=F 0.10 21.28 80.64 889.05 0.00 - < 0.01 ∗ ∗ < 0.01 ∗ ∗
R6=T=F 1.30 25.41 70.86 775.96 0.00 - - < 0.01 ∗ ∗
R6=T6=F 7.13 51.56 115.19 988.21 0.00 - - -

JDT

R=T=F 0.64 12.91 36.92 377.84 0.00 0.19 0.32 < 0.01 ∗ ∗
R=T6=F 0.83 13.01 32.98 281.03 0.00 - 0.49 < 0.01 ∗ ∗
R6=T=F 0.79 12.48 45.23 583.11 0.00 - 0.49 < 0.01 ∗ ∗
R6=T6=F 2.11 26.02 69.71 705.90 0.00 - - -Platform JDT

R=T=F R=T≠F R≠T=F R≠T≠F R=T=F R=T≠F R≠T=F R≠T≠F
Tbug-fix(da
ys)

Tbug-fix(da
ys)

Fig. 5. Boxplot of the bug management patterns and Tfix in Platform and JDTPlatform JDT

days (log scale) days (log scale)
Ratio of fix
ed bugs

Ratio of fix
ed bugs

R=T=FR=T≠FR≠T=FR≠T≠F R=T=FR=T≠FR≠T=FR≠T≠F
Fig. 6. Required days to fix bugs in Platform and JDT

TABLE VIII
REQUIRED DAYS TO FIX THE MAJORITY (80%) OF BUGS

R=T=F R=T6=F R6=T=F R6=T 6=F
Platform 14.87 12.94 22.92 63.13

JDT 10.79 16.30 8.00 18.19

We inspected our data and found that several “super” devel-
opers from IBM dedicate considerable efforts to bug fixing in
the pattern [R 6=T=F]. As we described in RQ3, [R 6=T=F] is
the worst for Tassignment. The triagers in JDT might assign

tasks to themselves to fix bugs soon.�

�

�

�
The bug management patterns impact the speed of bug
fixing. The pattern [R6=T 6=F] makes the performance
worst even if we do not account for bugs that are
reassigned to more than one developer.

VI. DISCUSSIONS

We now discuss our findings and their impact on overcom-
ing the difficulty of the bug management process. We also
presents the threats to validity of our study.

A. Summary of our findings

Through our research questions RQ 1–4, we can confirm
the impact of the individuals involved in bug fixing. In
summary, we observe the following consequences of our bug
management patterns on the bug management process.

• When a triager makes a bug report as a reporter, the time
to assign a bug fixing task to a fixer is 17–47% faster
than when a regular reporter does so [RQ1].

• However, surprisingly when the triager assigns a bug
fixing task to himself, he needs 48%–58% longer time
for the bug assignment than when he assigns it to other
developers [RQ3].

• When a triager assigns a bug fixing task to himself, he
can fix the bug around two times faster than when he
assigns it to other developers [RQ2].

• Conclusively, the pattern [R 6=T6=F] exhibits the worst
performance in bug fixing (at least two times slower than
the other patterns on average days) [RQ4].

Our results highlight the importance of social and knowl-
edge sharing factors on the bug management process. We note
the need for better tools to facilitate the knowledge sharing and
communication between project personnel. We also believe
that researchers would benefit from integrating such social
knowledge (i.e., roles and individuals) in their software quality
models, in particular, models to predict the fix time of bugs.

B. The impact of discussions on the bug management process

As we expected, the pattern [R 6=T6=F] leads to the worst
performance in bug fixing (Tfix). However, we noticed that the
boxplot of [R6=T6=F] in Figure 5 had the widest distribution.
This implies that in some cases the pattern [R6=T6=F] works
better than other patterns.

We sought to explore this closely to overcome the chal-
lenge associated with [R6=T 6=F]. We manually checked 100
randomly selected bug reports from the whole bug report
data (1,558 for Eclipse and 629 for JDT) in that pattern. We
then compared quickly-fixed bug reports with slowly-fixed bug
ones. We found that discussions about bugs before bug report
assignment made a difference in the bug-fixing performance.

Figure 7 shows the relationship between the bug-fixing
time and the number of discussions comments before the bug
assignment in the Platform project. We see Tfix is gradually
reduced as comments (discussions about a bug in Bugzilla)
increase. We also manually read the bug reports and found
that developers including triagers discussed how to reproduce
and fix the bugs, and who would be the most appropriate to
fix the bugs.

From this finding, we can say that project personnel can
improve their efficiency through better communication about
bugs before assigning them. Discussions among developers
are still very important not only for efficient bug-fixing but
also for preventing reassignments, although the time to assign
bug fixing tasks to appropriate fixers (Tassignment) might be
slightly prolonged due to the discussions.

Platform

Tbug-fix(d
ays)

of comments
Fig. 7. Tfix and discussions before the bug report assignment in the pattern
[R6=T6=F] of the Platform project

C. Other factors that would impact the time to fix bugs

Although in this paper we focused on the bug management
patterns, we can also consider many other factors that would
impact the time to fix bugs: bug (content of a bug report), day
and time, stakeholders) [10], [23]–[25] and so on. For instance,
a bug report with high severity might be fixed sooner than
other bugs. We extracted metrics associated with such factors
from our dataset as listed in Table VI-B.

In order to demonstrate the impact of the factors on time
to fix bugs, we created a prediction model based on logistic
regression to quantify the relationships between the factors.
The procedure for creating the prediction model is as follows:

1) Top five categories frequently appeared in each indepen-
dent variables with nominal scale are transformed into
dummy variables since the existence of many dummy
variables are likely to create the issue of multicollinear-
ity. Note that we also calculated VIF (Variance Inflation
Factor) to confirm the issue of multicollinearity between
any two independent variables and eliminated variables
if the VIF exeeded 10.

2) The value of the dependent variable is set as 1 if bug
fixing (Tfix) is completed within the three kinds of
specified period of time (in a day, in a week, and in
a month) and otherwise it is set as 0 (i.e., Tfix exeeds
the specified period of time.)

3) We divide our dataset used in this study into nine fit
data (fit1, · · · , fit9) and one test data (test).

4) Using the nine fit data and a logistic regression model,
we build a model to predict whether Tfix is completed
in each specified period of time.

5) Using the test data, we calculate the prediction accuracy
for each specified period of time.

6) After repeating Step 3) – Step 5) ten times, we calculate
the average prediction accuracy.

Table X shows the calculated results of the prediction accu-

TABLE IX
METRICS ASSOCIATED WITH FACTORS THAT WOULD AFFECT TIME TO FIX BUGS

factor metrics (variable name) scale descriptions

bug

Component nominal component name specified in the bug report
Priority nominal priority for fixing the bug
Severity nominal severity of the reported bug

Milestone nominal whether or not a milestone is specified in the bug report
DescriptionWords interval number of words in “Description” in the bug report
CommentsCount interval number of comments in the bug report
CommentsWords interval number of words in comments

AttachmentsCount interval number of attachments (e.g., patches and screen shots)
DependsOnCount interval number of bugs which must be resolved before the reported bug

BlocksCount interval number of other bugs which are blocked by the reported bug
CCCount interval number of users who might be interested in the bug report

day and time

AssignTime interval time to assign the bug fixing task to a developer (i.e., Tassignment)
AssignedMonth interval month in which the bug fixing task was assigned to a developer

AssignedDay interval day in which the bug fixing task was assigned to a developer
AssignedWeekEnd nominal whether or not the bug fixing task was assigned in the weekend

stakeholder

Reporter nominal email address of the reporter (who reports the bug)
Triager nominal email address of the triager (who triages the bug)
Fixer nominal email address of the fixer (who resolves the bug)

Pattern nominal bug management pattern used in fixing the bug (main scope of this paper)

TABLE X
PREDICTION ACCURACY OF OUR PREDICTION MODEL FOR PLATFORM

prediction precision recall F1-valueperiod
prediction accuracy in a day 68.14 38.22 48.97
of our logistic in a weak 67.90 76.66 72.02
regression model in a month 76.67 98.77 86.33
improvement rate in a day 66.68% -6.50% 19.80%
against random in a week 14.22% 28.95% 21.14%
prediction in a month 2.35% 31.86% 15.24%

racy for each specified period. It also shows the improvement
rate against a prediction result which was calculated 1,000
times by randomly selecting one independent variable. Almost
all results with the three evaluation measures (precision, recall
and F1-value) tend to be better when predicting a longer period
of time. All the F1-values of our results also perform the result
which is predicted by using randomly selected independent
variable.

We analyzed which independent variable contributed to our
prediction model building. We used deviance residuals as the
measures to check the model fit. If deviance residual value for
one independent variable is larger than others, it means that the
model fit well due to the independent variable. Table VI-C is
the results of deviance residuals. We can see that Component
(i.e., which component is fixed) is the most important factor
to predict Tfix in each period of time. Pattern (i.e., the bug
management patterns) and Fixer (i.e., who fixes the bug) are
second and third important factors respectively. The results of
Component and Fixer are consistent with the existing studies
[3], [10], [25]. Contrary to our expectation, Triager (i.e., who
triages the bug report) does not contribute to the prediction
model for Platform. From these results, we can conclude
that the bug management pattern is an unignorable, important
factor which has an impact on the time to fix bugs and should
be carefully managed by project personnel.

TABLE XI
IMPORTANCE OF EACH INDEPENDENT VARIABLE IN OUR PREDICTION

MODEL FOR PLATFORM

factor metrics deviance residuals
(variable name) <a day <a week <a month

bug

Component 263.06 177.64 132.95
Priority 9.22 5.98 1.41
Severity 1.38 3.70 3.88

Milestone 6.31 5.04 4.96
DescriptionWords 0.42 1.67 2.54
CommentsCount 3.39 11.84 16.32
CommentsWords 4.56 1.52 1.17

AttachmentsCount 3.84 0.04 0.99
DependsOnCount 6.26 2.72 0.67

BlocksCount 0.70 0.61 1.40
CCCount 12.08 8.33 5.04

day AssignTime 4.71 11.54 11.48
and AssignedMonth 9.87 9.08 22.23
time AssignedDay 0.61 1.90 0.05

AssignedWeekEnd 0.10 0.09 1.75

stakeholder

Reporter 7.23 14.63 22.22
Triager 8.60 7.60 9.65
Fixer 76.26 72.27 53.10

Pattern 154.49 123.81 89.50

D. Threats to Validity

In this study we only used three years (from 2007 to 2009)
bug report data without reassignments in the Eclipse projects
to obtain a clear understanding of the bug management pro-
cess. Such data selection (including the limited term of data
and excluding reassignments) might bring bias [26] against
the complete picture of open source development, we need to
conduct exhaustive analyses to make our results much more
valuable in the future.

We studied only the two open source projects: Eclipse
Platform and JDT projects. These projects are large scale,
successful projects and so they have sufficient bug report data
to validate our patterns. However they have many developers
who are fully employed by IBM and who dedicate consid-
erable efforts to development of the Eclipse products since
the Eclipse projects originally started as a corporate project of

IBM. So, our findings in this study might not be applicable
to any other open source projects. In addition, the user base
of the Eclipse products (i.e., the knowledge and skill of the
individuals involved in the Eclipse projects) is different from
that of other products such as the Mozilla products (e.g.,
Firefox and Thunderbird). We need to apply our patterns to
other projects in the future to verify the generality of our
findings.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explored the bug management process from
a social perspective. In particular, we studied the impact of the
roles associated with the process and the different individuals
playing these roles. We found that:

1) There is a need for better ways to communicate and
share knowledge between the different individuals. In
cases where all roles where played by different indi-
viduals, the efficiency of the bug fixing was negatively
impacted.

2) One project (i.e., JDT) put careful attention on prioritiz-
ing the fixing of bugs that have been slowed down due
to inefficiencies early on in the bug management process
(i.e., bug assignment taking too long).

3) Communication appears to have a positive impact on
speeding up bug fixing time even when every role is
played by different individuals.

Our results highlight the importance of social and knowl-
edge sharing factors on the bug management process. We note
the need for better tools to facilitate the knowledge sharing and
communication between project personnel. We also believe
that researchers would benefit from integrating such social
knowledge (i.e., roles and individuals) in their software quality
models, in particular, models to predict the fix time of bugs. In
future work, we wish to investigate whether our findings hold
when we integrate other confounding factors (e.g., complexity
of the bug and its associated fix). In particular, we wish to
explore whether social (i.e., our patterns) have a stronger
impact on the bug management process than technical factors.

ACKNOWLEDGMENTS

This research is conducted as part of Grant-in-Aid for
Scientific Research (B) 23300009 and (C) 24500041 by Japan
Society for the Promotion of Science (JSPS).

REFERENCES

[1] “Bugzilla,” http://www.bugzilla.org/.
[2] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug

tossing graphs,” in Proceedings of ESEC/FSE ’09, 2009, pp. 111–120.
[3] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in

Proceedings of ICSE’06, 2006, pp. 361–370.
[4] D. Cubranic and G. C. Murphy, “Automatic bug triage using text

categorization,” in Proceedings of SEKE’04, 2004, pp. 92–97.
[5] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative

model approach for accurate duplicate bug report retrieval,” in Proceed-
ings of ICSE’10, 2010, pp. 45–54.

[6] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in Proceedings of
ICSE’07, 2007, pp. 499–510.

[7] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of ICSE’08, 2008, pp. 461–470.

[8] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, ““not my
bug!” and other reasons for software bug report reassignments,” in
Proceedings of CSCW’11, 2011, pp. 395–404.

[9] ——, “Characterizing and predicting which bugs get fixed: an empirical
study of microsoft windows,” in Proceedings of ICSE’10, 2010, pp. 495–
504. [Online]. Available: http://doi.acm.org/10.1145/1806799.1806871

[10] E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira, B. Adams,
A. Hassan, and K. Matsumoto, “Predicting re-opened bugs: A case study
on the eclipse project,” in Proceedings of WCRE’10, 2010, pp. 249–258.

[11] N. Bettenburg, S. Just, A. Schröter, C. Weiß, R. Premraj, and T. Zimmer-
mann, “Quality of bug reports in eclipse,” in Proceedings of tEclipse’07,
2007, pp. 21–25.

[12] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Proceedings of FSE-16,
2008, pp. 308–318.

[13] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting
structural information from bug reports,” in Proceedings of MSR’08,
2008, pp. 27–30.

[14] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs
in bug reports: improving cooperation between developers and users,”
in Proceedings of CSCW ’10, 2010, pp. 301–310.

[15] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in
Proceedings of ASE’07, 2007, pp. 34–43.

[16] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” IEEE Transactions on
Software Engineering (TSE), vol. 36, no. 5, pp. 618–643, 2010.

[17] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful ... really?” in Proceedings of ICSM’08,
282008-oct.4 2008, pp. 337 –345.

[18] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging,” in Proceedings of
ICSM’10, 2010, pp. 1–10.

[19] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” in Proceedings of eeclipse’05, 2005, pp. 35–39.

[20] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using
a vocabulary-based expertise model of developers,” in Proceedings of
MSR’09, 2009, pp. 131–140.

[21] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in Proceedings of MSR’06, 2006, pp.
137–143.

[22] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu, “Detect-
ing patch submission and acceptance in oss projects,” in Proceedings of
MSR’07, 2007, p. 26.

[23] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and mozilla,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 11, no. 3, pp.
309–346, 2002.

[24] I. Herraiz, D. M. German, J. M. Gonzales-Barahona, and G. Robles,
“Towards a simplification of the bug report form in eclipse,” in Pro-
ceedings of MSR’08, 2008, pp. 145–148.

[25] M. D. Syer, B. Adams, Y. Zou, and A. E. Hassan, “Studying the fix-time
for bugs in large open source projects,” in Proceedings of PROMISE’11,
2011.

[26] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in
Proceedings of ESEC/FSE ’09, 2009, pp. 121–130.

