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Abstract

An important software reliability engineering tool is op-
erational profiles. In this paper we propose a cost effective
automated approach for creating second generation oper-
ational profiles using execution logs of a software product.
Our algorithm parses the execution logs into sequences of
events and produces an ordered list of all possible subse-
quences by constructing a suffix-array of the events. The
difficulty in using execution logs is that the amount of data
that needs to be analyzed is often extremely large (more than
a million records per day in many applications). Our ap-
proach is very efficient. We show that our approach requires
O(N) in space and time to discover all possible patterns in N
events. We discuss a practical implementation of the algo-
rithm in the context of the logs from a large cloud computing
system.

Keywords: Software reliability, Operational Profile, Ex-
ecution logs, Suffix Arrays, O(N).

1. Introduction

In his work, Musa suggests that operational profiles can
guide the allocation of resources to improve the software
reliability and speed of development [16]. The expected
operational profile for an average sized project (10 devel-
opers, 100KLoC, 18 months development time) may take
about one person month to create from scratch (require-
ments, end-user interviews, designs, etc.). Typically oper-
ational profiles are created from the software requirements

and through customer reviews. This usually requires exten-
sive human effort and takes a long time. For an appropri-
ately chosen operational profile, the benefit-to-cost ratio can
be 10 or greater [18].

In studies of operational profiles, most existing efforts
concentrates on frequently occurring patterns for identi-
fying frequently used functions and frequent errors. Our
approach identifies frequent patterns as well as infrequent
ones because the rare patterns could indicate important
events as well. For example, a rare event may indicate a
combination that the designer of software did not antici-
pate and should be disabled or handled differently. A rare
event may also point to a potential security hole or anoma-
lies in design or implementation with severe consequences.
Therefore, computing these rare event sequences can be an
important part of an operational profile.

Most systems log their actions for a variety of purposes.
Often in commercial software systems, they are used to as-
sess Quality of Service for the customers [19, 21]. Some
systems in the financial sector, primarily log their actions
for auditing purposes. Systems in telecommunications and
financial companies are now required by the Sarbanes-
Oxley Act of 2002[4] to log their actions. Similarly HIPAA
[2] requires health care systems to log their transactions.
These execution logs, which have to be collected anyway
for a combination of reasons, contain the actual usage infor-
mation, and can be used to construct operational profiles.

The problem with using log files for deriving operational
profiles is the large volume of the data that needs to be an-
alyzed. For example, the size of a log file from a telecom
application can be over 100MB, and have about one mil-



lion events collected over a 24 hour period [10]. Hassan et
al. report getting few of the most frequently occurring sce-
narios within 2-3 hours with some human intervention [10].
Vaarandi, on the other hand, used a clustering algorithm to
get the patterns from event logs [23].

Finding the frequency of a particular event can be done
by simply scanning the log file. But the length of sequences
of events could vary from 1 to N/2, where N is the total
number of events in the log file. A brute force solution to
determine the frequency of all the patterns would require an
exponential (/V!) order of time. In this paper we introduce
a new approach for construction of second generation oper-
ational profile in an automated way in O(kN) time, where
k is the average frequency of the sequence of events. We
define second generation operational profiles as, those op-
erational profiles that are derived using the actual usage of a
software system in a production environment. We use data
structures called Suffix Arrays (SA) and Longest Common
Prefix (LCP) introduced in [14] for our solution.

In practical cases it is likely that k& has an average value
that is much smaller than the value of N and is independent
of N. This implies that complexity of our algorithm is of
the order O(/N). Given that every one of the N events needs
to be examined by any pattern discovery algorithm, O(V)
should be regarded as the optimal complexity.

We evaluated our algorithm using logs from a cloud
computing environment in production at North Carolina
State University since 2004 [5], [7].

1.1 Organization of the Paper

The paper is organized as follows: Section 2 presents
some traditional techniques used to derive operational pro-
files. It also provides information on suffix arrays, the data
structure that we use in our approach. In section 3 we briefly
discuss some of the related work. In section 4 we explain
our approach of finding frequency of patterns in log files us-
ing suffix arrays and the longest common prefix array. Sec-
tion 5 discusses the complexity of our algorithm. In section
6 we present and discuss results from the experiments we
conducted. We also discuss some of the limitations of our
approach. Section 7 concludes the paper.

1.2 Contributions

Principle contributions of this paper are

1. A novel approach for construction of second genera-
tion operational profiles from execution logs. Our ap-
proach is based on the use of Suffix Arrays that are
extensively used in bio-informatics domain [14] and in
analyzing whole program paths for software optimiza-
tions [20], but have not been used to construct opera-
tional profiles.

2. A solution that finds the occurrence probability of both
single events and sequences of events - from those with
high occurrence probability to those with a low occur-
rence probability. Most other solutions provide only
the probability of the most frequently occurring events
[10].

3. An automated solution that does not require users to
tune any parameters.

2 Background
2.1 Deriving Operational Profiles

Operational profiles are traditionally created by a com-
bination of system engineers, high-level designers, test en-
gineers, product planners and marketing people [16]. They
derive the operational profile by manually quantifying the
usage of each element in the system, in a manner as close
as possible to expected customer usage. However the op-
erational profile calculated from the expected usage differs
from that based on the actual usage [10], [16]. The latter
is likely to lead to better reliability estimates of the system
during field operation. Therefore, it is advantageous to use,
in the second and higher releases of a product, operational
testing profiles that are closer to the actual operational be-
havior of the product.

Getting the operational profile based on actual usage is
not a simple matter [24]. Code profiling and trace analysis
are some of the available techniques.

The Eclipse Test and Performance Tools Platform
(TPTP) [1], and Java Virtual Machine Profiler Interface
(JVMPI) [3], are some of the more popular code profil-
ing tools. They are primarily used during the testing phase
and not in a production environment as they can slow down
the system [11]. Trace analysis tools and techniques per-
form a very similar task. They explore traces from program
execution dynamically for a variety of purposes like soft-
ware optimization. In their survey, Hamou-Lhadj and Leth-
bridge, discuss the strengths and weaknesses of eight trace
exploration tools [8]. They state that the object oriented sys-
tems have driven the increase in the number of such tools as
polymorphism and dynamic binding greatly limit the use of
static analysis. They conclude with the need for a common
framework for trace exploration tools and techniques.

Execution logs, code profiles and execution traces are a
record of the usage of a system. But code profiles and ex-
ecution traces could generate information that is orders of
magnitude bigger as they may include every function call
and branch statement. Since this could affect the perfor-
mance of the software system, they are often not found in
production systems. The execution logs on the other hand
are more flexible. It collects only that information which a
developer wants. Hence even production systems have logs.



Table 1. Example: SA of the text "abra-
cadabra” and the LCP

i [SA(i)[Suffix LCP(i)
0] 11 |a 0
1| 8 |abra 1
2| 1 |abracadabra| 4
3| 4 |acadabra 1
4| 6 |adabra 1
5/ 9 |bra 0
6| 2 |bracadabra 3
7| 5 |cadabra 0
8| 7 |dabra 0
9| 10 |ra 0
10| 3 |racadabra 2

These logs can be used to build operational profiles that are
based on actual usage of the production system by the user.

2.2 Suffix Arrays

Manber and Myers invented the suffix array (SA) to
identify all possible occurrences of a pattern in a text [14].
SA is a data structure that was built to improve the space
and time efficiency of suffix trees. The SA of a given string
A, is defined as the lexicographical ordering of all the suf-
fixes of A. Suffixes of a string, say “abcd” are the strings,
“abcd”, “bed”, “cd”, and “d” and prefixes for it are “abcd”,
“abc”, “ab”, and “a”. Table 1, illustrates the suffix array
data structure with an example. The third column contains
all the possible suffixes of the string “abracadabra”, which
we will call A. The second column is the suffix array for A.
The suffix “a” would be the first string in the lexicographi-
cal ordering. The index position at which “a” is found in the
string A is the value that is stored in the suffix array, here
the value being 11. The LCP is an array that is as big as the
SA and stores the length of the longest common prefixes
between adjacent strings in the SA. For example in Table
1, we see that the second and third suffixes are “abra” and
“abracadabra”. The longest common prefix between these
two strings is “abra”, the length of which is four. Hence we
can see the value of 4 in the LCP array at the position cor-
responding to “abracadabra”. Thus if the LCP value for a
suffix is k (>0), then the first k characters in that particular
suffix is a pattern that occurs at least twice in the text. This

is the property that we will exploit in our approach. In our
approach we define a repeating pattern as a subsequence of
events that appears more than once in the given sequence of
events. Since some of these repeating patterns may be con-
tained in others, we will concentrate on those longest ones
called the maximal-length repeating patterns, or the maxi-
mal patterns for short. Given a set of repeating patterns that
occur in the same locations in a given sequence, the longest
pattern is called the maximal-length repeating pattern.

Manber and Myers state that one of the basic applica-
tions of SA and LCP is to search all the instances of a
pattern in a text [14]. This is because all similar patterns
are clustered together in the lexicographically sorted SA.
Therefore we need to search only for the first occurrence
of a pattern in the SA. When N, the length of the text, is
large as in the case of human genome or as in our case of
huge log files and the text remains constant, the search us-
ing SA and LCP of the text is better than other techniques.
Since a small change to the text A may require SA and LCP
to be constructed from scratch, SA and LCP are generally
used for text that does not change. Some of the new al-
gorithms can construct the SA in O(N) time in the worst
case [13, 26], and can construct the LCP in O(/N) time [12].
The search for the pattern is then a simple augmentation to
binary search and we can find the position of all the z oc-
currences, of a pattern of length P, in the text of length IV,
in O(P + logN + z) time.

3 Related Work

The usefulness of analyzing log files has been long rec-
ognized. Tools like SEC [22], Splunk [6], and Swatch [9],
are used to monitor log files. SEC is an event correlation
tool, Splunk is a log management tool, and Swatch is a log
monitoring tool. All the three of them and other similar
log analysis tools can only monitor the logs for a particu-
lar event or sequence of events. Most of them perform a
regular expression match. What is common in them is that
the event(s) need to be known in advance. Once known,
they can analyze the event(s) in the log file and get the fre-
quency of them to build operational profiles. But we need
the expertise of the developers to come up with the event or
sequence of events. The developer has to think of all possi-
ble cases for a particular action and all the actions for which
we need the frequency. Using SEC, Splunk, and Swatch we
can only find out the usage probability of the sequences we
search for. We cannot find the most frequently used part of
the system, unless the developer thought of it earlier. This
technique helps verify the developers prediction, but does
not itself calculate the operational profile. However these
tools can be used to extract the event identifiers from the
log files to be used by other automated operational profilers
for finding repeated sequence of events.



Hassan et al. [10] and Vaarandi [23] have come up with
other solutions to analyzing log files that have overcome this
issue. They do not require the developers to come up with
sequences of events before the analysis starts. Hassan et
al. use a log compression approach to identify patterns and
their densities in the log files. In their approach they exploit
the fact that a file with more repetition in it will be com-
pressed more by a tool like gzip. They split the log file into
equal sized periods, and compress each of them. They plot
the compression ratio as a log signal to find the period with
the greater density. This period is likely to have more repe-
titions. An engineer of the system then identifies the pattern
that is repeating and writes filtering rules for it. Therefore
it only aids the human in identifying patterns, thus making
it a semi-automatic approach which cannot avoid human in-
tervention. The log file is filtered of this pattern and then all
the steps are repeated again. In this approach we can only
detect the top few sequences and their relative densities, and
it takes 2-3 hours to just come up those.

Operational profiles are often derived using clustering al-
gorithms [15], [16], [17] which have non linear time com-
plexities. Vaarandi’s tool called Simple Log File Clustering
Tool (SLCT) [23] uses a novel clustering algorithm to mine
for patterns in log files. The tool has very low execution
times that vary from 7-11 minutes for a log file of size 1
GB. He exploits log file properties such as (a) Most words
in a log file occur only a few times, and (b) Frequently oc-
curring words have a high correlation. The clustering al-
gorithm itself has three steps, viz. building data summary,
building cluster candidates, and selecting clusters from this
set. The performance of this clustering algorithm proposed
by is highly sensitive to a user-specified parameter called
support threshold, which makes the algorithm hard to use
by other users. Our algorithm on the other hand does not
require the user to tune any parameters. Also the SLCT al-
gorithm finds only single line patterns, i.e. the count of a
particular log line only unlike our algorithm that can find
patterns that extend across multiple lines.

4 Our Approach

Fig. 1 illustrates our approach to get the operational pro-
file from the execution logs. It consists of three steps, viz.
Log Abstraction, Construction of the data structures SA and
LCP, and Finding the patterns.

4.1 Log Abstraction

Abstracting the log lines to an event type is an impor-
tant preprocessing step. An example of log abstraction pro-
cedure was proposed by Jiang et al. recently [11]. Tools
like SEC [22], an event correlation tool or Swatch [9], a log
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Figure 1. Main steps in our approach

monitoring tool can also be used to abstract the event iden-
tifiers from the log files. Both of these are rule based, and
hence light weight and easy to use. In our approach we used
a technique similar to the one used by Xu et al. [25]. Source
code analysis is done to identify the statements that print to
the log file.

The first step is to identify the function (method) that
is called to print the log messages in the log file. To do
this we randomly select some lines, say a hundred, from the
log files. We identify the message type in these log lines.
Then we search for the message types in each of these log
lines, in the source code using the search function of a text
editor. Thus we find the method used to print these state-
ments into the log file. In our case study, a method called
notify ($Serror, S$LOG, $data) was used to print
to the log file. Then we extract all the calls to this particular
method. For example

(1) notify (SERRORS{’OK’}, 0, "Snode ssh
port S$port open");

(2) notify (SERRORS{’WARNING’}, 0, "failed
to run newsid.exe on $computer_node_name,
exit status: S$newsid_exit_status,output:
Snewsid_output") ;

The parameter which holds the data printed in the log file is
extracted. The data is a string with constants and variables.
In our case study, the third parameter called $data holds this
string value. We build a regular expression with this param-
eter. In the regular expression we maintain the constant part



of the string, but replace the variable with a ‘(.)+’. Also we
assign a unique integer to each regular expression. These
steps have to be done only once for an application. The
regular expressions and the corresponding integers are the
same for all the log files of a particular application. Exam-
ples of regular expression from the case study are

1: ssh port (.)+ open$
2: failed to run newsid.exe on (.)+ exit
status: (.)+,output: (.)+$

A particular line in the log file will match with at least one
of these regular expressions. When more than one match
occurs we choose the match with the regular expression of
greater length. This matching is done using the boost-regex
library available in C++ distributions. We replace each log
line by the unique integer corresponding to the matching
regular expression. The integer representation of the events
in the logs is easier to manipulate using SA and LCP than
the actual names of the events. Since the abstraction of a
line of log is independent of the abstraction of another line,
it is a problem with an embarrassingly parallel solution.
In our case study a 100 MB log file was abstracted to its
integer equivalent in 99.64 minutes. This was done on an 8
core system running centOS with each core being a Intel(R)
Xeon(R) 2.00 GHz CPU, and 2 GB memory. We used the
#pragma omp parallel for num_threads (6)
directive to run the abstraction on 6 parallel threads.

4.2 Construct SA and LCP

We build the SA and LCP of the integer representation
of log events using O(/N) algorithms. Many such algorithms
are known. In our work we used the suffix array construc-
tion algorithm proposed by Zhang and Nong [26] and LCP
construction algorithm by Kasai et al. [12] respectively. An
example of SA and LCP for a sample string is illustrated in
Table 1. Note that a suffix array represents a sorted version
of all subsequences that appear in the events extracted from
the log files; and LCP (longest common prefix) counts how
many events are common to two neighboring sequences in
the sorted list.

4.3 Find Patterns

We use the LCP to identify all the possible patterns, in-
cluding single length ones, in the list of events gathered
from the log file. Recall that the LCP array contains infor-
mation about how many events two neighboring sequences
in sorted order have in common, it is straightforward to
count how many events are shared among more neighboring
sequences as illustrated in Fig. 2. In our approach the log
events are replaced by integer indexes as explained in Sec-
tion 4.1. In the example though, the suffixes we consider are
letters of the English alphabet for ease of understanding.

i |SA() Suffix LCP(i)

156 | 30 MCA... 1

157 | 3 QWBCA... 0

158 | 15 QWBCX... 4

159 | 94 QWERTY... 2

160 | 56 QWERT... 5 )

161 72 | QWERX.. 4 LCP(i)> LCP(162)

162 | 36 QWETU... 3 [ LCP(162)=3

163 | 47 WETX... 4

Q LCP(i) >= LCP(162)

164 | 24 QWEX... 3

165 | 81 QWMBEC... 2 |

166 | 65 QWMBE... 4 Note: In the Suffix colu.mn,
we show only the prefixes

167 | 89 RCA... 0 of the suffix and not the
entire suffix

Figure 2. Operational Profile from LCP and
SA

Consider row 162, with value (36, QWETU, 3), which
is in bold font in the figure. We use the term LCP value
for a particular integer in the LCP array. Each LCP value
greater than zero indicates a pattern that has repeated at least
once. To calculate the frequency count of the pattern we
examine the LCP values after and before the element in the
LCP array currently under examination, in that order. We
count the number of LCP values after the current element in
the LCP array under examination, till we reach a LCP value
less than it. Then we count the number of LCP values before
the current element in the LCP array under examination, till
we reach a LCP value less than it. In the latter case we
compare the absolute values instead of the actual values in
the LCP array. The aggregate of these two counts + 2 is the
frequency count of the pattern.

In our example, the LCP value at position 162, is three.
Since three is greater than zero, we count the number of
LCP values after this entry till we reach a value less than
three. In this example there are two such entries, namely
four, and three. The count now is therefore two. At index
164 when the LCP value is equal to the LCP at the current
index 162, namely three, we change the LCP value at in-
dex 164 to negative three. This is done to indicate that the
pattern at index 164 of length three is a repetition of the cur-
rent pattern at index 162, namely ‘QWE’ and that we should
avoid double counting of the patterns. We now compare the
LCP value at current index 162 with the absolute value of
the LCP value before the current position. We find two en-
tries, namely four and five before we reach two, a value less
than the current LCP value. The count therefore becomes
four. Therefore in our example the frequency of the pattern
at the current position is four plus two, i.e six. The pattern
itself begins at the first character of the current suffix and is
of length equal to the current LCP value. In our example the
first character at the current position is ‘Q’. The LCP value



is three. Therefore length of pattern is three. Hence the
pattern in this case would be ‘QWE’. Thus we have found
out that the pattern ‘QWE’ occurs six times in the text. In
our approach we get a sequence of integers as the pattern,
and therefore will have to transform the integers to actual
event names using the correspondence between the integers
and the regular expressions from the first step explained in
Section 4.1.

Thus, by exploiting the unique properties of SA and LCP,
originally used to detect all occurrences of the given pat-
tern in text, we detect all the possible clustered sequence of
events (patterns) and the number of times each occurs in the
log file (the text), and hence build the operational profile.

S Algorithm Analysis
5.1 Complexity Analysis

Let N denote the number of lines in a input log file to be
processed. We can compute the cost of the each step of our
approach as follows.

Log Abstraction : We read the log file line by line and
store it in a vector. We replace each log line by an integer
finally. We read the log file in chunks of size n(n << N)
so that we can optimize on space required, when log files
are very large. We also read the regular expressions for the
application into vector of size M. To read the entire log file
and the regular expressions we need O(/N 4+ M) in time and
O(n+ M) in space. Since M is constant for a particular ap-
plication and if it is significantly smaller than N (in our case
study N = 6,195,200, and M = 2629), the time and space
complexity for the read operation will be O(N). Value of
M differs from application to application, but in each appli-
cation it remains a constant irrespective of the growth of the
value N for that application.

Below is the pseudocode for the abstraction algorithm.

1: for each line in log_file:

2 for each regex in regex_file:
3: if match(line, regex) != 0
4: return regex_id

5 endif

6 end for

7: end for

The match (1ine, regex) method in line 3 does the
matching between the line of text in the log file of length n,
and the regular expression of length m. The time complex-
ity of this step is O(m + n). The value K = m + n is not
related to /V. But the maximum value of K is constant for a
particular application. The inner for loop executes M times
and the outer for loop executes N times. Hence the time
complexity of this step is O(K M N). As K and M are con-
stant for a particular application, the value of N is the only

value that grows in an application. Therefore in O-notation,
the time complexity of this step is O(V). If K or M is a
large constant then performance degradation can occur. In
our case study, the value of K was never over 700 and the
value of M was 2629 both of which are much smaller than
the maximum value of N which was 6,195,200. The out-
put is an array of integers one for each line on the log file.
Thus the space required for this step is O(N + M + N) for
the input vector, regular expression vector and output array
respectively. Since M can be considered a constant with re-
spect to the application, the space complexity is also O(JV).

Construction of SA and LCP : In this step we construct
the SA and the LCP array using linear time algorithms.
Such algorithms require both O(/V) space and time[26, 12].
For example, the suffix array construction algorithm pro-
posed by Zhang and Nong recursively reduces the problem
size at least by a half in each iteration and each iteration per-
forms O(INV) work, therefore, it requires O(/V) time overall.
In addition, it reuses the same workspace of O(IV) size at
different iterations, thus it uses O(/NV) space altogether as
well. The LCP array construction algorithm by Kasai et al.
[12] passes through SA array once without any additional
storage. Therefore, both SA and LCP can be constructed
with O(NN) storage.

Finding Patterns : In this step we count the number
of patterns using the LCP array. For each element of LCP
array, LCP(z), our algorithm looks forward and backward
as follows.

for each i less than N
Initialize count to O
//To find the count of similar patterns
//Scan lcp values after current index
//Skip the iteration if lcp[i] < O
=1
while lcpl[i] <= lcpl]j + 1]

Increment count

if(lcpli] == lcpl[j+1])
//negate lcp[j+1] to indicate
//repetition

endif

=3+ 1

end while

//Scan lcp values before current index

3 =1

while lcpl[i] <= abs(lcpl[] - 11])
Increment count
j=3 -1

end while

end for

In this procedure, we need to examine no more than k+ 1
LCP values at a cost of O(k), where k is the average fre-
quency of the sequence of events. The above procedure



identifies k£ neighboring suffixes with LCP(z) leading events
in common. Note that LCP(?) is the maximum number of
events the suffix ¢ has in common with the suffix (z — 1).
If the suffix ¢ has more events in common with any other
pattern, that pattern must involve the suffix (¢ + 1) and such
a pattern would be counted in the next step.

Let K denote the maximum value of &, then the total cost
of this step is O(KX N). A more accurate bound on the cost is
O(EkN), with k being the average number of occurrences of
a pattern. For a fixed set of possible events, the value of k of
a random sequence of these events will increase as a linear
function of log(N'). However, for practical applications, we
postulate that % is approximately constant - it does not vary
much with N, and is much smaller than N for large N. In
our case studies we found that k was on the average equal
to 5 whereas IV was as large as 6,195,200. If k is much
less than N, then the time complexity of this step is O(V).
This step produces an array with N elements, each repre-
senting the number of occurrences of the longest repeating
pattern starting with the event at SA(¢). Therefore the space
requirement is O(V).

Time and space complexity of our approach is the sum of
the time complexity of the steps above. Hence it is O(N +
N + N) which is O(V).

5.2 Correctness

Since we identify patterns with LCP, our algorithm iden-
tifies all maximal patterns in the log files. Recall that a max-
imal pattern is the longest repeating pattern. In the example
given in Fig. 2, the shortest repeating pattern starting with
’Q’ is ’"QW’ which repeats 10 times. The pattern "QW’ is
a maximal pattern because it also contains a shorter pattern
involving *Q’ only. We say pattern ’Q’ is covered by "QW’.
The pattern starting with "W’ will appear later in the suffix
array and would include the 10 occurrences already shown
but may have other occurrences as well. Therefore, pattern
"W’ is not covered by 'QW’. In general, any prefix of a
maximal pattern will appear at least as many times as the
maximum pattern itself. If it only appears as many times as
the maximal pattern, it will not be counted separately in our
approach. If it appears more times, then it will be counted
separately or counted as part of another maximal pattern. In
the same example, the length 2 pattern ’QW’ appears more
times than any of the length 3 patterns starting with "QW’,
therefore, it is counted separately.

To see that our approach actually counts all repeating
maximal patterns, we observe that the suffix array sorts all
N suffixes of a list of [NV events. Any subsequence appeared
in the log file has a chance to be the prefix of one such
suffixes. In this sorted list of suffixes, any repeating pat-
terns will appear next to each other by construction [14].
The LCP array records the length of the longest-common

2009-03-22 21:45:28|10.192.7.5 ssh port 22 open
2009-03-22 21:45:28 | VCL::Module::0S OS object successfully
created

2009-03-22 21:45:28| VCL::inuse object created and initialized

Figure 3. Examples of Log Entries from VCL
prefixes, i.e., the maximum number of common events in
two neighboring sequences in the sorted order. The ‘Find
Patterns’ algorithm in step 3 of our approach explained in
section 4.3 identifies the maximal repeating patterns as ex-
plained. In addition, it also counts the number of occur-
rences of each maximal pattern.

6 Results

We explore further using an implementation of our ap-
proach. The machine used for testing was a Intel(R)
Xeon(R) 2.00 GHz CPU, with 2 MB of cache and 2GB of
RAM, running centOS 5.2. The implementation was writ-
ten in C/C++ and compiled with the 4.1.2 release of the
GCC compiler with the omit-frame-pointer flag turned on
for optimization. We used log files from the Virtual Com-
puting Lab (VCL) [5], [7], a cloud computing environment
that reserves resources with the desired set of applications
for remote access. VCL is written in several languages
including perl and has about 25 modules and more than
60,000 lines of code. Fig. 3 has example entries from VCL
logs. The IP-Address was anonymised for security.

We tested our operational profile generation implemen-
tation on a sample log file. We manually verified the cor-
rectness of the results.

We wrote all the sequences of events, of varying lengths,
into an ASCII file in sorted order according to their fre-
quency of occurrence in the log file. For each of the log files
we recorded some run time details like number of events in
the log file, time taken for execution to complete (in sec-
onds) and the percentage of time spent on input/output. The
objectives were:

1. To experimentally demonstrate our claim of O(N).

2. To discuss the operational profile with the technical
lead of the VCL application for his interpretation of
the operational profile.

6.1 VCL Logs

In this case study we used five different log files of sizes
332 MB, 306 MB, 273 MB, 192 MB, and 59 MB that
spanned 4 weeks of operation of the NC State University
Virtual Computing Laboratory (VCL) operation. The first
4 log files had more than a million events and the fifth one
had 356,950 events. Table 2, shows the number of events in
the sample, the time to find patters, the value of k., and the
total time needed to calculate and output operational profile



Table 2. VCL Log Data. Total number of
events covered is 5,500,000.

No:of Events[Find  Pat-|k Total Time (In-
(100,000’s) |terns (secs) cluding I/0) (secs)
1 0.055805 2 1.14445

2 0.105715 3 2.34686

3 0.161791 4 4.31964

4 0.224572 4 6.66332

5 0.33063 4 10.0355

6 0.423281 4 13.8074

7 0.348127 3 17.0773

8 0.572854 4 22.7966

9 0.646797 4 26.073

10 0.754963 4 31.0628

for that sample. We can see that the total execution time,
including I/O is a lot more than the time needed to calcu-
late the patterns, and that it grows rapidly with the number
of events V. This is because I/O to disk slows down the
process.

We considered 10 independent samples of VCL log files.
One with 100,000 events, another with 200,000 events and
so on, till 1 million log events were reached in increments of
100,000 events. Each of these 10 files were from different
parts of the log files with no overlap between them.

In Fig. 4, we see the relationship between execution time
and the number of events in each run. The & value of each
data point is shown in the graph. The execution time in-
creases approximately linearly with the number of events.
We note that k is between 2 and 4. A drop in execution
time occurs in the 700,000 events sample because its k value
drops from 4 to 3. In order to test if our approach works for
very large files, we concatenated all five log files to get one
very large log file of size more than 1GB with 6,195,200
events. The time taken to find all patterns in this file was
5.9457 seconds. The corresponding & value was 5 and the
total execution time including I/O was 718 seconds.

Second generation operational profiles can be used in a
number of ways. One is to optimize the application and
to find anomalies. For example, Table 3 gives us infor-
mation on the top two operations in VCL. The values in
the table are averages across the 5 files. The entire ASCII
file with all the identified event sequences, the lengths of
these sequences and frequency of occurrence in the log file,
sorted in descending order of their frequencies, was shown
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Figure 4. Execution Time vs. Number of
events in VCL log. % is shown next to each
data point.

Table 3. The Operational Profile Collected
from VCL Logs

VCL Operation |% of occurance| Length of Sequence

Database Access 15.73 4
Load OS Modules 13.38 3

to the technical lead of the VCL application. The entire
interview, including the identification of sequences and the
following discussion on the significance of these event se-
quences lasted for 30 minutes. He used the ‘less’ and ‘tail’
command, available in the linux OS, to view the most fre-
quent and least frequent event sequences from the ASCII
file. From the list of the most frequent event sequences in
the beginning of the file, he identified the following

e ‘Load OS Module’ : This was expected to be one of
the most frequent operations and it showed up in the
top of the list. Every time a VCL reservation is made
the ‘Load OS Module’ operation is performed.

e ‘Database Access’ : It was interesting to the techni-
cal lead to know that the ‘Database Access’ was also
among the most frequent operations. This operation
polls the status of a VCL reservation and updates the
database and is non critical. As a result of this study
they can reduce the number of queries to the database
from 15.73% to a more efficient value.

We also discussed the least frequently occurring events
that were found at the end of the results file. These were
the events that occurred only once in the log files. These
events can be interesting because they may indicate anoma-
lies. Two of these events that the technical lead described
as worth additional attention were.

1. neighbor request (.)+state set to deleted$ : This is an
event sequence of length one. This occurs when a ma-



chine that already has an image loaded is assigned to
load another image. Normally that should not happen.

2. rpower status is not on, node needs to be reloaded$ :
This is an event sequence of length one. This means
that the target machine has been powered off. This
message indicates that the loader was not informed
that the resource was unavailable prior to attempting
to load the image. Perhaps an error in the scheduling
algorithm?

It was pleasing to see that this second generation operational
profile was found useful as a diagnostic tool that can help
solve problems and optimize production codes. We plan to
package our tool and make it available to the open source
community.

6.2 Discussion

Experimental results shown in Figure 3 are consistent
with the Section 5.1 O(N) analysis of the complexity of our
operational profile computation algorithm.

It is interesting to note that Hassan et al.’s approach re-
quires 2-3 hours to find the first pattern in a log file with
1,152,049 log lines and of size 137 MB. In our approach
we can find all the patterns in a log file of size 1GB with
6,195,200 events in about 718 seconds after the log abstrac-
tion has been done. A direct comparison can not be made
due to lack of information about the computer that Hassan
et al. used. However, it is worth noting that our log ab-
straction method is embarrassingly parallel and a very high
speed up can be achieved.

Automation provides considerable advantage in the case
of our solution. For example, in comparison Vaarandi’s ap-
proach the support threshold parameter has to be tuned by
trial and error. Also the pattern detected is only a frequency
count of individual log lines. Patterns of a combination of
log lines are not be detected by Vaarandi’s approach . In
Hassan et al.’s approach human intervention is needed to
filter out the first pattern before the next pattern in the log
file can be detected. The authors claim that for the their ap-
proach to work, a human has to peruse less than 1% of the
log files. But this amounts to almost 10,000 lines when a
log file of a million or more events is considered. This can
be very difficult for the human. We overcome both these
limitations. Every pattern irrespective of its length and fre-
quency is detected. Also there is no human involved until
the extracted patterns have to be interpretted. At that stage
the human merely looks at less than a few hundred log lines.
Also in the case study conducted by Vaarandi, 181 clusters
were found [23], and in the case study conducted by Hassan
et al. 7-10 patterns we found [10]. These are the most fre-
quently occurring patterns. In our approach we identified
and calculated the frequency of all patterns and arranged
them in sorted order. Thus the most frequently occurring

pattern as well as the least frequently occurring pattern can
be analyzed simultaneously. By altering the condition for
the sort routine from ‘pattern frequency’ to ‘pattern length’
or from descending to ascending order or any combination
thereof, we can ensure that the patterns that we care for the
most are at the top of the output.

Limitations : However, even our approach has some re-
maining limitations. For example, a software system de-
veloper still needs to look into the operational profile out-
put to determine what each sequence signifies. This hu-
man inspection to identify what the patterns mean, takes
time, and cannot be avoided with any method. In other
solutions, a human will have to peruse the log file to find
the sequence of events, before the operational profile can
be derived. In our approach though, the operational profile
is available and the human is needed only to identify what
a sequence of events means. Our approach (as do all au-
tomated approaches based on logs) is typically applicable
only to second and higher releases of a product, i.e., after
the logs have been obtained. We could also use the log files
collected during beta-testing as they will contain user usage
information. Thus we could use our approach to derive an
operational profile to prioritize the issues in the first release
of the product. The operational profile derived by our ap-
proach is based solely on the logs. The accuracy of the op-
erational profile is therefore directly related to the accuracy
of the logging facility for that application.

7 Conclusion

Operational profiles are important software reliability
engineering tools. In this paper we have presented an auto-
mated approach for creating second generation operational
profiles using execution logs of a software product. The
tool we built to do that is simple (about 800 lines of code)
but very effective. Our algorithm parses the execution logs
into sequences of events and produces an ordered list of all
possible subsequences by constructing a suffix-array of the
events. The difficulty in using execution logs is that the
amount of data that needs to be analyzed is often extremely
large (more than a million records per day in many appli-
cations). Our approach is very efficient. We show that our
approach requires O(N) in space and time to discover all
possible patterns in N events. We used an implementation
of the algorithm in the context of the logs from a large cloud
computing system. We were able to build a log-based op-
erational profile in this case study in under a few seconds.
When compared to 2-3 hours [10], or one staff month [16]
needed by some other approaches for much smaller logs
than the ones we used, this can be a significant savings in
time. In our approach we collect the frequency of all possi-
ble event sequences, including the least frequent ones. From
this we are able to construct comprehensive second genera-



tion operational profiles more efficiently. Such profiles can
then be used as optimization and anomaly detection diag-
nostic tool, and for construction of regression testing suites.
Our tool will be released into the open source domain.

Acknowledgment

We would like to thank, Aaron Peeler for providing the
VCL log files. We would also like to Aaron for his valu-
able inputs on the interpretation of the operational profile
from the log files. We would also like to thank Dr.Stallmann
for the discussions on the complexity analysis. This work
was started as part of an internship at Lawrence Berkeley
National Labs under the guidance of Dr.Shoshani. This re-
search was funded in part by the DOE grants DE-FC02-
ER25809, and DE-AC02-05CH11231.

References

[1] The Eclipse Test and Performance Tools Platform.
http://www.eclipse.org/tptp/ (accessed 05/14/2009)

[2] HIPAA Regulations and Standards.
http://www.hhs.gov/ocr/hipaa/ (accessed 05/14/2009)

[3] Java Virtual Machine Profiler Interface.
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html
(accessed 05/14/2009)

[4] Sarbanes-Oxley Act of 2002.

http://thecaq.aicpa.org/Resources/Sarbanes+Oxley/
(accessed 05/14/2009)

[5] Virtual Computing Lab(VCL). http://vcl.ncsu.edu/ (ac-
cessed 05/14/2009)

[6] Splunk http://www.splunk.com/ (accessed 05/14/2009)

[7] S. Averitt, M. Bugaev, A. Peeler, H. Schaffer, E. Sills,
S. Stein, J. Thompson, and M. Vouk., ”The virtual
computing lab.” In International Conference on Virtual
Computing Initiative, Research Triangle Park, NC, May
2007. pp. 1-16.

[8] A.Hamou-Lhadj, T.C. Lethbridge., ”A survey of trace
exploration tools and techniques.” In Proceedings of the
2004 Conference of the Centre For Advanced Studies
on Collaborative Research, Markham, Ontario, Canada,
October 04 - 07, 2004. pp. 42-55.

[9] S.E. Hansen, and E.T. Atkins., ”Automated System
Monitoring and Notification With Swatch.” In Proceed-
ings of the 7th USENIX Conference on System Admin-
istration. System Administration Conference. Berkeley,
CA. November, 1993. pp. 145-152.

[10] A. E. Hassan, D. J. Martin, P. Flora, P. Mansfield and
D. Dietz, ”An Industrial Case Study of Customizing
Operational Profiles Using Log Compression.” In ICSE
‘08 Leipzig, Germany, May 10-18, 2008, pp. 713-723.

[11] Z.M. Jiang, A.E. Hassan, P. Flora, G. Hamann., ”Ab-
stracting Execution Logs to Execution Events for En-
terprise Applications (Short Paper).” The Eighth Inter-
national Conference on Quality Software, 12-13 Aug,
2008. pp.181-186.

[12] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K.
Park., ”Linear-Time Longest-Common-Prefix Compu-
tation in Suffix Arrays and Its Applications.” In Pro-
ceedings of the 12th Annual Symposium on Combinato-
rial Pattern Matching, July 01 - 04, 2001. pp. 181-192.

[13] P. Ko and S. Aluru, ”Space-efficient linear time con-
struction of suffix arrays.” Journal of Discrete Algo-
rithms, vol. 3, no. 2-4, pp. 143-156, 2005.

[14] U. Manber, and G. Myers., ”Suffix arrays: a new
method for on-line string searches”. In Proceedings of
the Symposium on Discrete Algorithms, San Francisco,
California, Jan 22-24,1990. pp.319-327.

[15] D.A. Menasc, V.A. Almeida, R. Fonseca, and M.A.
Mendes., ”A methodology for workload characteri-
zation of E-commerce sites.” In Proceedings of the
1st ACM Conference on Electronic Commerce (Den-
ver,United States, November 03 - 05, 1999. pp. 119-
128.

[16] J. D. Musa.,, “Operational profiles in software-
reliability engineering.” IEEE Software, 10(2):1432,
1993.

[17] J.D.Musa, G. Fuoco, N. Irving, D. Kropfl, and B. Juh-
lin. ”The operational profile.” In Handbook of Software
Reliability and System Reliability., 1996. pp. 167-216.

[18] M. Nagappan, M.A. Vouk, K. Wu, A. Sim, A.
Shoshani. ”Efficient Operational Profiling of Systems
using Suffix Arrays on Execution Logs (Student Pa-
per).” 19th International Symposium on Software Re-
liability Engineering, 11-14 Nov, 2008, Redmond, WA.
pp. 313-314.

[19] A.Oliner andJ. Stearley., "What Supercomputers Say:
A Study of Five System Logs.” In Proceedings of the
37th Annual IEEE/IFIP international Conference on
Dependable Systems and Networks. Washington, DC.
June, 2007. pp. 575-584.

[20] G. Pokam, F. Bodin., ”An Offline Approach for
Whole-Program Paths Analysis Using Suffix Arrays.”
LCPC 2004. pp. 363-378

[21] M. Steinle, K. Aberer, S. Girdzijauskas, and C. Lovis.,
”Mapping moving landscapes by mining mountains of
logs: novel techniques for dependency model genera-
tion.” In Proceedings of the 32nd international Confer-
ence on Very Large Data Bases. Seoul, Korea. Septem-
ber, 2006. pp. 1093-1102.

[22] R. Vaarandi, ”SEC - a lightweight event correlation
tool,” IEEE Workshop on IP Operations and Manage-
ment, 2002, pp. 111-115.

[23] R. Vaarandi, ”A data clustering algorithm for mining
patterns from event logs.” IEEE Workshop on IP Oper-
ations and Management, 1-3 Oct. 2003, pp. 119-126.

[24] E.J. Weyuker and A. Avritzer., ”A metric for predict-
ing the performance of an application under a growing
workload.” IBM Systems Journal, 41(1):4554, 2002.

[25] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jor-
dan., ”Mining Console Logs for Large-Scale System
Problem Detection.” SysML ‘08, Dec 2008. pp. 1-6.

[26] S. Zhang, G. Nong, “Fast and Space Efficient Linear
Suffix Array Construction.” Data Compression Confer-
ence (dcc 2008), 2008, pp. 553.



