On Ad Library Updates in Android
Apps

Israel J. Mojica Ruiz*, Meiyappan Nagappan®, Bram Adams?®,
Thorsten Berger!, Steffen Dienst?, Ahmed E. Hassan*

*Software Analysis and Intelligence Lab (SAIL)
School of Computing, Queen’s University, Canada

§Lab on Maintenance, Construction and Intelligence
Ecole Polytechnique de Montréal, Canada

TGenerative Software Development Lab
University of Waterloo, Canada

{Chair of Business Information Systems
University of Leipzig, Germany

mojica,mei@cs.queensu.ca”, bram.adams@polymtl. cal,
tberger@gsd.uwaterloo. caf, sdienst@informatik. uni-leipzig. det,
ahmed@cs.queensu.ca”*

Abstract

With more than 90% of mobile apps today being free-to-download, adver-
tisement within apps is one of the key business models to generate revenue.
Advertisements are served through the embedding of specialized code, i.e.,
ad libraries. Unlike other types of libraries, developers cannot ignore new
versions of the embedded ad libraries or new ad libraries without risking a
loss in revenue. However, updating ad libraries also has expenses, which can
become a major problem as ad library updates are becoming more prevalent
in mobile apps.

Hence in this paper, we first discuss the various expenses involved in up-
dating ad libraries, then empirically explore the prevalence of “ad library
updates” within Android apps. An analysis of 13,983 versions of 5,937 An-
droid apps collected over 12 months shows that almost half (48.98%) of the
studied versions had an ad library update (i.e., ad library was added, re-
moved, or updated). Interestingly, in 13.75% of app updates (new version in
the Google Play store) with at least one case of ad library update, we found
no changes to the app’s own API, which suggests substantial additional effort
for developers to maintain ad libraries. We also explore the rationales for
why such updates are carried out.

Keywords — Mobile apps, Advertisement libraries, Software maintenance

1 Introduction

Mobile apps are software applications developed for mobile devices, such as
smartphones and tablets. Apps are available via online distribution channels
called app stores, such as the Apple App Store, and Google Play. Across these
stores, the mobile app market grew from $18 billion in 2012 to $26 billion of
revenue in 2013. However, approximately 91% of the apps in such app stores
are free-to-download [10]. Hence, many app developers use non-traditional
revenue models to monetize their apps.

One of the most popular revenue models is the advertisement (ad) model,
where ads are displayed within an app, and developers earn money every
time users click on such ads. To serve ads, developers must embed specialized
libraries — ad libraries — in their apps. Previous studies estimated that around
51-60% of free Android apps have at least one ad or analytics library [4, 7, 9].
Gartner projects that the revenue from mobile ads (both mobile apps and
websites) will reach $18 billion in 2014 [18]. App Annie and IDC found that
revenue from in app advertising has gone up by 56% in 2013 [2].

Given the highly competitive nature of the ad industry, ad libraries are
updated on a regular basis to include new ad serving models, or for legal and
financial reasons (e.g., merging of advertising companies). In that case, app
developers need to decide if they wish to integrate the updated libraries into
their app. While an ad library would not usually affect the core function-
ality of an app (hence most library updates can be safely ignored), such an
update to an ad library might have a big impact on the revenue of an app.
However, releasing a new version of the app primarily because of an updated
ad library could be a hard sell (figuratively) to existing users. It costs money
to download the new update (especially on 3G) and users also need to worry
about whether it would be safe to update to the new version, i.e., does it
break existing behaviour or corrupt existing data?

Thus, updates to ad libraries could be expensive directly in terms of
maintenance effort, and indirectly in terms of lost revenue when skipped.
More details about these various expenses related to ad library updates in
mobile apps are presented in Section 3. If such updates are prevalent among
mobile apps, then the software engineering research community and the ad
library companies need to come up with innovative solutions to reduce these
expenses. On the other hand, if such updates are not prevalent or solutions
could be found to reduce the associated expenses of ad library updates, then
these expenses may not be that costly.

However, there is no current research that examines the prevalence of ad
library updates in mobile apps. Hence, the main contribution of this article is
to empirically investigate the prevalence of ad library updates in mobile apps
by mining 13,983 versions of 5,937 Android apps over 12 months (Section 4).
We find that almost half (48.98%) of the studied versions of Android apps
had an ad library that was added, removed, or updated (for convenience, we
call all of these cases, “ad library updates”). In Section 6, we dig further,
based on our results in Section 5, to determine why app developers needed
to update the ad libraries in their apps. Finally, we conclude in Section 7.

2 Background and Related Work

In this section, we present some background information on ad serving mod-
els, and introduce key terminology with respect to ads.

Advertiser Advertising Company App Developer App User

N 6. request/send ad l
[] ,

J)
2. sign contract . % .
Ls — - 4. integrate 0 5. install app
. sign contrac > ~ad libraries “4 >
I) 3. deliver ad libraries forart N A
A App
s

‘user saw ad
7. disburse . $S
revenue user clicked on ad

user comple- $$$

ed an actio

Figure 1: The process for serving ads in mobile apps.

2.1 Ad Serving Models

Figure 1 gives a simplified overview of the process for serving ads. The entity
that wants to put mobile advertisements — the advertiser — signs a contract
with an advertising company. The advertising company provides ad-libraries
that app developers can integrate into their apps. These libraries are invoked

at run-time in order to serve ads based on communicated information about
the users (e.g., their location, or their interest). Developers receive financial
compensation when users interact with the ad, for example, when a user sees
it, clicks on it, or buys a product or service through it.

Unfortunately, given the competitive nature of the advertising business
and the limited supply of ads, app developers commonly embed multiple
ad libraries into their mobile apps. These multiple ad libraries would then
request ads from various ad-pools that are offered by different advertising
companies. More precisely, an app would request an ad using one library.
If the library cannot fill the ad, the app would request an ad from another
library. The average fill rate for ads is as low as 18% [3]. Such a low fill rate
encourages developers to use multiple ad libraries to maximize their chances
of obtaining an ad to display to their users.

2.2 Related Work

Prior wok primarily investigates privacy and security issues of ad libraries [4,
7, 9]. In contrast our work explores software engineering aspects of ad li-
braries, namely updates such libraries.

Grace et al. analyzed 100 libraries, and found that most ad and analytics
libraries collect personal information, and some of them allow the possibility
to execute code unauthorized[9]. Enck et al. analyzed the top 1,100 popular
apps from Google Play. Their analysis reveals that ad and analytics libraries
are not dangerous per se, but often exploit, and insecurely transmit, tracking
identifiers to their servers [7]. Davidson and Livshits conducted an experi-
ment on 3,120 Android apps from which they were able to eliminate 2,684
unnecessary permissions. They found that the most common permissions are
INTERNET (699 apps) and ACCESS_COARSE_LOCATION (502 apps) [4].
Other researchers have even looked into the power consumed by the ads in
apps. For example, Pathak et al. find that free apps can drain 75% more
power due to poorly developed ad libraries [15].

3 What are the expenses related to ad library
updates?

This section discusses the major expenses involved with ad library main-
tenance. The list of expenses discussed in this section are by no means a

3

complete list. Rather, they comprise an initial list (i.e., lower bound of
expenses).

A. Software Maintenance Cost: One of the obvious cost factors of ad
library updates is that of software maintenance. The app developer needs
to keep track of the updates done to the ad libraries by its developers and
be on the look-out to include new ad libraries that may provide additional
revenue, while remembering to remove ad libraries that violate any new app
store policy. Once a new version is available, app developers need to embed
the new version of the ad library and update the app code as well to reflect
the new version of the library, i.e., replace calls to the old ad API by calls to
the new one. Integrating a new version of an ad library might even entail re-
designing part of the Ul to fit in the new ad library. This cost is applicable
for new ad libraries that are added and old ones that are removed. Once
changes to the code are done, the app now needs to be re-built and re-tested.
All of these activities take time and effort [12], thereby adding to the usual
software maintenance cost for the app.

B. Delays in Delivering the New Version of the App to the End
User: Once an app has been updated by the developer for maintenance
related ad library updates, it has to be deployed in the app store. Even in
app stores like Google Play where the deployment system is fully automated,
it can take a few hours before the new app is available in the app store.
However, in stores like the Apple App Store, this deployment phase can take
days or weeks, since each version is manually verified. Once the new version
of the app is available in the app store, there still remains the uncertainty as
to when the end users would update the app in their mobile devices. New
releases are not necessarily welcomed by users, since there is always a risk
that a new update (even if it only involves just ad library updates) breaks
an app’s behaviour [11]. All of these delays would result in lost revenue.

C. Lack of Ads: App developers could potentially lose revenue when they
do not update ad libraries. Such a loss of revenue is due to a lack of ads
being served from dead ad libraries [8]. We define dead ad libraries as ad
libraries that remain in the app without being able to serve any more ads.
The developers could also lose revenue when the ads delivered through an
old library are not as interesting from a user perspective as ads delivered
through a new library. This is because if the users are not interested, then
they may not click on an ad in the app, which is one of the major ways that
generates revenue for app developers.

D. Poorer End User Experience: Advertising companies also update

4

ad libraries to provide better ads, to improve performance, and to fix bugs.
When developers ignore these changes, end users can be left with ads that
are not relevant to them, consume too much CPU or battery life, or in the
worst case access irrelevant private information. Across all app stores, we
can find end user complaints about ads within apps [14]. These comments
are often associated with poor ratings, and thus affect future downloads of
an app. Furthermore, the users often state that they will either not use the
app, or worse, uninstall it. In the former case, app developers will not be
able to get ad revenue from these users, and in the latter case, even if the
app is updated to address the ad-related issues, the end user will not get the
notification for an update.

Key Take Away: Additional maintenance activities, delays in delivery,
lack of ads, and poor end user experience can directly or indirectly impact
the app developers financially.

Hence, it is important to understand how prevalent ad library updates
are for mobile apps. However, no concrete numbers or studies are available
for this topic [17]. Existing studies and surveys only consider the cost of
developing the first version of an app, with only rough approximations for
maintenance cost [1, 16]. In this paper, we present an empirical case study
to quantify the prevalence of ad library updates in mobile apps.

4 Identification of Ad Libraries

To investigate the prevalence of ad library updates, we first need to identify
ad libraries. Since there exists no collection of existing ad libraries, we iden-
tify them from data obtained via a crawl of the Google Play Store [6]. The
crawl downloaded all free-to-download apps in the store throughout 2011,
and resulted in 120,981 Android apps with 236,245 versions in total. Using
this dataset, we can identify ad libraries and their distribution throughout a
large number of apps.

The crawled data contains the Android Packages (APK) of each app (not
their source code). We first extract the Java bytecode from the APKs using
dex2jar !, then use the Apache beel library ? to extract for each class in each
app, the fully qualified class name (package or namespace in which a class
is contained and the class name) and its set of method names. We then

thttp://code.google.com/p/dex2jar
2http://commons.apache.org/bcel /

manually filter the fully qualified class names of all apps with the regular
expression [aA][dD] (e.g., com.packageAdlibraryName.AdclassName).

The very basic regular expression (i.e., [aA][dD]), leads to a large number
of matched class names, even though these matched classes would not cor-
respond to ad libraries. Hence, we needed to manually validate the matched
classes. For this, we grouped and sorted the fully qualified class names ac-
cording to their frequency (com.google.ads. AdActivity with 149,321 occur-
rences was the most popular class). For each fully qualified class name that
had a frequency of more than 200 (i.e., included in at least 200 apps or 0.1%
of the total number of apps in the crawled data), we did a web search of
the package name in order to find the website for the advertising company
of that library. We expect that each advertising company has a website for
developers to conclude contracts in order to receive ads and payments. In
the end, we discovered 72 known ad libraries.

5 Prevalence of Ad Library Updates among
Mobile Apps

We define ad updates as the number of ad libraries added, deleted or modified
in an app. We use this as a measure of ad library updates that occurred in
an app between versions.

As we do not have access to the source code of the studied apps, we
resort to analyzing extracted signatures from the bytecode of these apps.
Furthermore, we focus on updates in the actual ad library, but not in the
glue code used to interface with the ad library, since that would require us
to (1) design static analyses specific to every ad library, and (2) deal with
obfuscated byte code (since we would need access to the code inside each
class). Similarly, in the actual ad library, we can only measure the number
of libraries that had an update, and not the amount of churn (in terms of
lines of code) that happened in each library.

To measure ad updates, we only consider apps with at least two versions.
As apps with very few raters could potentially be spam apps [13] and intro-
duce a bias in our results, we also just consider apps that have at least ten
raters in Google Play. This filtering leaves us with 5,937 apps with 13,983
versions in total.

We then proceed to compare how each app has updated over time. In

particular, we sought to determine if a new version of an app had ad updates,
non-ad (i.e., core of the app) updates or both. In order to perform such an
analysis for a large number of classes, we make use of the software bertillonage
approach [5], with which we create a unique signature for each class of each
app. Such signatures can be compared very efficiently. The signature is
computed as follows:

1) Group fully qualified class names with the list of method names and pa-
rameters for each class into a string S. This string is the signature of the
class.

2) Classify each signature S, as a specific ad library (based on the previously
identified ad libraries), or classify as non-ad library code (henceforth called
“core code”).

3) For each such signature S, generate a hash value for quick matching. We
apply SHA1 to generate the hash values.

For each app, we obtain a set of signatures for the ad library code and
for the core code. We then compare the signatures of each ad library in
a particular version of an app (version;) with those of its subsequent ver-
sion (version;y1). Using this approach, we distinguish between the following
four cases for each two consecutive versions of an app:

(a) The signatures of the ad library are identical in both versions, i.e., the
APIs of this ad library did not change.

(b) Some of the signatures belong to a new ad library in app version i + 1,
i.e., none of the class signatures in that library exist in version 1.

(¢) The signatures of an ad library in app version i are deleted (removed) in
the version 7 + 1.

(d) The signatures of an ad library are updated in app version i + 1. By
update, we mean that the lists of signatures of a particular ad library
in app version; and app version;;; are different (even if just one class
signature differs), and neither completely new nor completely removed,
unlike the previous two cases.

Table 1: Number of app versions for each type of ad library update among
the 6,850 app versions that have an ad library update.

Type of ad update | Number of app versions
Updated 4,470 (65.25%)
Added 2,993 (43.69%)
Removed 1,894 (27.64%)

We define that an ad library has a type of ad update if any of the (b),

(c) or (d) cases occurs between versions i and i + 1 of an app. While the
comparison of class signatures based on the software bertillonage approach
is coarse grained (we will not be able to track changes made within the
implementation of a particular method), the results that we obtain on the
updates of ad libraries is a lower bound. Thus, the ad libraries at a minimum
undergo the number of updates that we identify. If we could examine the
code within a method in a class, then we would be able to identify even more
updates in the ad libraries.
Finding: App developers actively maintain ad libraries: almost
half (48.98%) or 6,850 out of the 13,983 versions have a type of ad
library update. Table 1 presents a breakdown of the different types of ad
library updates. Almost two thirds (65.25%) of the versions had at least one
ad library update, while almost half (43.69%) of the versions had at least one
new ad library added. However, around a quarter (27.64%) of the versions
had at least one ad library removed. From Table 1, we can conclude that app
developers are more actively updating their current ad libraries than adding
or removing ad libraries — highlighting the importance and complexity of
keeping ad libraries up to date.

Another interesting finding is that in 13.75% (942) of the app versions
with ad updates, the APIs in the core code were never modified (the class
signatures unrelated to the ad library classes were identical). For example,
View. CalCollection.SangGeon. Cauly (a calculator app) was updated seven
times throughout 2011, yet none of these updates modified the APIT of its
core code - all changes were related to the adlantis ad library. This app is
a good example of how a very stable app, like a calculator, might require
constant maintenance due to updates in an ad library.

Key Finding: The prevalence of updating ad libraries in mobile apps is
considerable.

6 Discussion

We now seek to dig deeper into our results to better understand why ad
libraries are updated so frequently.

One of the main reasons why app developers needed to update the ad
libraries so frequently in their apps was because the APIs of the ad libraries
themselves were being updated very frequently. Table 2 presents how many
times the APIs of the top six most popular ad libraries in the studied apps
were updated, and a summary of the rationale for such updates (based on
information from either the changelog files included in the ad library or from
the website of the ad library). In short, some of the major reasons are: to
enhance interaction capabilities between ads and app users, integrate new
types of ads (e.g., video ads), fix memory management bugs, add better
and more secure management of personal information, and fix bugs that
prevented ads from being displayed properly.

0T

Table 2: Type of updates performed on the most popular ad libraries

Library Name

Number of updates in 2011

Brief description of the rationale for the 2011
updates

Googleads &
Admob

Transition for merging the googleads and the admob
libraries. Bug fixes to improve the users’ interaction
with the served ads, and to handle clicks.

Millennialmedia

Ads in video format received several improvements
across different updates of this ad library. Improve-
ments to click events for ad-videos.

Flurry

First released for a new ad-product called App Circle.
Update to pass conditions of user experience imposed
by Google. Improving the checks for the availability
of ads.

Adwhirl

Updates to work properly with different ad-networks.

Mobeclix

12

Capability of interstitial ads (ads displayed before
the app content is loaded). Prevent autoplay ads.
Adding mediation (coordinating ad networks) capa-
bility for Google/AdMob SDK and Millennial Media
Android SDK. Fixing bugs related to memory man-
agement, and clicks. Personal information is now en-
crypted before transmitting.

Youmi

15

Fixing bugs that prevent the display of ads on An-
droid OS 2.3. Lightweight initialization process to
display ads.

Key Finding: Ad libraries are updated by the advertising companies
sometimes as frequently as 6-15 times in a year in response to financial
mergers of ad companies, improved ads, and bug fixes. Such frequent app
updates force app developers to update their apps frequently as well in order
to include the latest version of an ad library.

7 Conclusion

We complement prior research by examining the amount of updates related
to ad libraries in mobile apps. Our results show that ad library updates in
mobile apps are very prevalent. Due to the various expenses that are related
to ad library updates (Section 3), the maintenance of ad libraries is rapidly
becoming a non-trivial and a costly affair for developers of mobile apps.
Practitioner Takeaways: Mobile app developers should be careful not to
ignore ad library maintenance, since their revenues can be affected, both in
a positive and/or negative way. New versions of ad libraries provide oppor-
tunities for additional income, but do require effort to integrate the new ad
version in a mobile app. Choosing an advertising company that has a stable
ad library with minimal updates would reduce the costs involved in updating
the ad library. When app developers decide to add a new ad library to the
app, they need to perform a cost-revenue analysis.

Future Work: The software engineering community has a new problem to
solve: ‘How to reduce the expenses and impact of ad library updates in mo-
bile apps?’. More specifically, since the ad libraries do not contribute to the
functionality of apps, the maintenance of such libraries brings different chal-
lenges compared to traditional libraries, such as: ‘How to change the API of
an ad library without inducing a loss in revenue for the app developer?’, ‘How
to reduce the effort involved in making these updates without any functional
or non-functional field failures?’, and ‘How to push the updates to the user
without disturbing them?’ These identified challenges call for future research,
to improve the maintenance and quality assurance of ad supported mobile
apps. Additionally, there are no studies (only informal discussions in Q & A
forums or non-peer reviewed articles) to estimate the actual cost of each of
the items discussed in Section 3. A large scale developer survey is needed to
have a better understanding of the exact dollar values for the aforementioned
expenses.

11

References

[1]

2]

AnyPresence Inc. The state of enterprise mobile readiness 2013.
http://www.anypresence.com/Mobile_Readiness_Report_2013.php, 2013.

App Annie and IDC. Mobile app advertising and monetization trends
2012-2017: The economics of free. http://blog.appannie.com/app-annie-ide-
mobile-app-advertising-and-monetization-trends-2012-2017/, March 2014.

H. Candeias. Smaato releases Q3 2011 mobile metrics report.
http://www.smaato.com/metricsq32011/, Nov. 2011.

D. Davidson and B. Livshits. Morepriv: Mobile os support for application
personalization and privacy, 2012. Technical Report MSR-TR-2012-50, avail-
able at http://research.microsoft.com/pubs/163596/MSR-TR.pdf.

J. Davies, D. M. German, M. W. Godfrey, and A. Hindle. Software bertillon-
age: finding the provenance of an entity. In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR, '11, pages 183-192, New
York, NY, USA, 2011. ACM.

S. Dienst and T. Berger. Static analysis of app dependencies in android byte-
code, 2012. Tech. Note, available at http://www.informatik.uni-leipzig.
de/~berger/tr/2012-dienst.pdf.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android ap-
plication security. In Proceedings of the 20th USENIX conference on Security,
SEC’11, pages 21-21, Berkeley, CA, USA, 2011. USENIX Association.

Google. Deprecated. Google Mobile Ads SDK v6.4.1
or lower. https://developers.google.com/mobile-ads-
sdk/docs/admob/fundamentals#android, Last Visited April 2014.

M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure analysis
of mobile in-app advertisements. In Proceedings of the fifth ACM conference
on Security and Privacy in Wireless and Mobile Networks, WISEC 12, pages
101-112, New York, NY, USA, 2012. ACM.

Janessa Rivera and Rob van der Meulen. Gartner says mobile
app stores will see annual downloads reach 102 billion in 2013.
http://www.gartner.com/newsroom/id/2592315, September 2013.

H. Khalid, E. Shihab, M. Nagappan, and A. Hassan. What do mobile app
users complain about? a study on free ios apps. Software, IEEE, 2014.

12

[12]

[13]

Kim-Mai Cutler. How do top android developers qa test their
apps? http://techcrunch.com/2012/06/02/android-qa-testing-quality-
assurance/, June 2012.

I. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. Hassan. A
large-scale empirical study on software reuse in mobile apps. Software, IEEE,
31(2):78-86, Mar 2014.

I. J. Mojica. Large-scale empirical studies of mobile apps. MSc Thesis, School
of Computing, Queen’s University, Kingston, Ontario, Canada, 2013.

A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my
app?: fine grained energy accounting on smartphones with eprof. In Proceed-
ings of the 7th ACM FEuropean Conference on Computer Systems, EuroSys
12, pages 29-42, 2012.

Roy Chomko. The real cost of developing an app.
http://www.manufacturing.net/articles/2012/07 /the-real-cost-of-developing-
an-app, July 2012.

Username:chockenberry and Username:typeoneerror. Stackoverflow (1010
votes): How much does it cost to develop an iphone applica-
tion? http://stackoverflow.com/questions/209170/how-much-does-it-cost-to-
develop-an-iphone-application, Oct 2010.

R. van der Meulen and J. Rivera. Gartner says mo-
bile advertising spending will reach $18 billion in 2014.
http://www.gartner.com/newsroom/id/2653121, Jan. 2014.

13

Israel Mojica is a software engineer at McAfee.
His research interests include mobile software
and empirical software analysis in general. Mo-
jica received an MS in computer science from
Queens University, Canada. Contact him at Is-
rael_Mojica@McAfee.com.

Meiyappan Nagappan is a postdoctoral fellow
in the Software Analysis and Intelligence Lab
(SAIL) at Queens University, Canada. His re-
search interests include deriving solutions that
encompass all the various stakeholders of soft-
ware systems and using large-scale software en-
gineering data to also address the concerns of
soft- ware operators, build engineers, and project
managers. Nagappan received a PhD in computer
science from North Carolina State University. He
received a best paper award at the International

Working Conference on Mining Software Repositories (MSR 12). Contact
him at mei@cs.queensu.ca.

Bram Adams is an assistant professor at the
Ecole Polytechnique de Montreal, where he
heads the MCIS (Maintenance, Construction,
and Intelligence of Software) lab. His research
interests include software release engineering,
software integration, software build systems,
software modularity, and software maintenance.
Adams received a PhD in computer science
engineering from Ghent University. He was an
organizer of the First International Workshop
on Release Engineering (RELENG 13) and is a

member of IEEE. Contact him at bram.adams@polymtl.ca.

Thorsten Berger is a postdoctoral fellow in
the Generative Software Develop- ment Lab at
the University of Waterloo, Canada. His re-
search interests include model-driven develop-
ment, variability modeling for software prod-
uct lines and software ecosystems, variability-
aware static analyses of source code, and min-
ing software repositories. Berger received a
PhD (Dr. rer. nat.) in computer science from
the University of Leipzig. Contact him at
tberger @ gsd.uwaterloo.ca.

Steffen Dienst is a PhD student in the Chair
of Business Information Systems at the Uni-
versity of Leipzig, Germany. His main research
topic is using machine- learning techniques to
help monitor the operation of renewable power
plants. Other interests range from reverse engi-
neering to functional programming. Dienst re-
ceived a M.Sc. (Dipl.-Inf.) in computer science
from the University of Leipzig. Contact him at
sdienst@informatik.uni-leipzig.de

Ahmed E. Hassan is the NSERC/Black- Berry
Software Engineering Chair at the School of
Computing at Queens University, Canada. His
research interests include mining software repos-
itories, empirical software engineering, load test-
ing, and log mining. Hassan received a PhD in
computer science from the University of Water-
loo. He spearheaded the creation of the Mining
Software Repositories (MSR) conference and its
research community. Hassan also serves on the
editorial boards of IEEE Trans- actions on Soft-

ware Engineering, Springer Journal of Empirical Software Engineering,
and Springer Journal of Computing. Contact him at ahmed @cs.queensu.ca.

