
DYNAMIC TASK SCHEDULING USING PARALLEL
GENETIC ALGORITHMS FOR HETEROGENEOUS

DISTRIBUTED COMPUTING

R.Nedunchelian, K.Koushik, N.Meiyappan, V.Raghu
Department of Computer Science and Engineering,

Sri Venkateswara College Of Engineering,
Pennalur, Sriperumbudhur 602105, India.

Abstract - A parallel genetic algorithm has been developed
to dynamically schedule heterogeneous tasks to
heterogeneous processors in a distributed environment.
The scheduling problem is known to be NP complete.
Genetic algorithms, a meta-heuristic search technique,
have been used successfully in this field. The proposed
algorithm uses multiple processors with centralized
control for scheduling. Tasks are taken as batches and are
scheduled to minimize the execution time and balance the
loads of the processors. According to our experimental
results, the proposed parallel genetic algorithm (PPGA)
considerably decreases the scheduling time without
adversely affecting the maxspan of the resulting schedules.

Keywords: Genetic algorithms, Parallel Processing,
Scheduling

1 Introduction
 Distributed computing is a promising approach to
meet the ever-increasing computational requirements [3].
Scheduling is the most important issue in the distributed
system because the effectiveness of the scheduling directly
corresponds to the parallelization obtained. With
inappropriate scheduling mechanisms can fail to exploit the
true potential of the distributed system. The scheduler has
the dual responsibility of minimizing the execution time of
the resulting schedule and balancing the load among the
processors. Even when the target processors are fully
connected and when no communication delay is
considered, scheduling is NP complete. This problem is
known as strong NP-hard intractable optimization problem
when it assumes arbitrary number of processors and
arbitrary task processing time [4]. Scheduling is usually
handled by heuristic methods which provide reasonable
solutions of the problem.

Multiprocessor scheduling methods can be divided into list
heuristics and Meta heuristics. In list heuristics [5], the
tasks are maintained in a priority queue in decreasing order
of priority. When a free processor is available, the task at
the front of the queue is assigned to the free processor.
Most list heuristics are not efficient for all situations.

Genetic algorithms (GAs) are a Meta heuristic searching
techniques which mimics the principles of evolution and
natural genetics. These are a guided random search which
scans through the entire sample space and therefore
provide reasonable solutions in all situations. Many
researchers have investigated the use of GAs to schedule
tasks in homogeneous [8, 9] and heterogeneous [3, 6, 7]
multi-processor systems with notable success.
Nevertheless, the main draw back of using GAs is that too
much time is used for doing scheduling. Hence, we
propose a parallelized genetic algorithm to speed up the
scheduling.

Fitness evaluation is the most CPU intensive tasks and can
be very time consuming and therefore become a bottleneck
in the scheduler’s performance. We propose to use,
synchronous master slave parallelization by which fitness
evaluation is done in parallel. This is equivalent to a
sequential GA as observed by [2].

The rest of the paper is organized as follows: Section 2
discusses Parallel Genetic Algorithm. Section 3 elaborates
on scheduling and parallel genetic algorithm. The proposed
parallel genetic algorithm is discussed in Section 4. Section
5 discusses experimental results and Section 6 concludes
with future research directions.

2 Parallel Genetic Algorithms (PGAs)
 Sequential Genetic algorithms have been applied
successfully in many different domains. However, there
exist some problems in their utilization [2] which can be
addressed by PGA. Some GAs need to have very large
populations which make them impossible to run efficiently
on a single machine. Some GAs get trapped in a
suboptimal region of search space. The most common
problem faced by a sequential GA is the CPU time.
Computation time of more than 1 CPU year has been
reported in the literature [10].

In most parallel algorithms, the basic idea behind the
algorithm is to divide the task into subtasks and use
different processors to execute each subtask. This divide-
and-conquer approach can be applied to GAs in many
different ways, and the literature contains many examples

of successful parallel implementations. A complete
classification of PGAs is given in [11].

In master slave parallelization, there is a single panmictic
population, but the evaluation of the fitness function is
distributed among several processors. Since, selection and
crossover consider the entire population they are also
called Global parallel GAs. The master always waits for
the slowest slave processor before starting the next
generation. Asynchronous master slave parallelization is an
extension of synchronous master slave parallelization in
which the master does not wait for the slowest processor.
The selection operator gets affected because of the change
and the resulting GA dynamics are difficult to analyze
[2].One of the advantages of synchronous master slave
parallelization is that the underlying GA characteristics are
not affected. This model does not assume anything about
the underlying architecture and therefore is most suited in
distributed environment.

Fine-grained parallel GAs are most suited for massively
parallel computers and consists of one spatially-structured
population. Selection and mating are restricted to a small
neighborhood, but neighborhoods overlap permitting some
interaction among all the individuals. The selection and
mating operations in these PGAs are different from those
of a sequential GA.

PGAs with multipopulation are also possible. The
important characteristics of multi-deme PGAs, also called
as coarse grained GAs, are a few relatively large
subpopulations and migration. They introduce fundamental
changes in the operations of GA and are the most difficult
to understand. Since the deme sizes are small, these GAs
converge faster but the quality of the resulting solutions
might be poorer.

Hierarchical PGAs combine the characteristics of multi-
deme PGAs with fine-grained or master slave PGAs [12].
At the higher level, they are multideme algorithms with
single population parallel GAs at the lower level.

3 Parallel Genetic Algorithms and
Scheduling

 Artificial intelligence techniques have been
successfully applied to task scheduling [3, 6, 7, 8, 9, 13,
14]. Good results have resulted from the use of GAs in task
scheduling algorithms [3, 6, 7, 8, 9].Parallel Genetic
algorithms have been applied to homogeneous
multiprocessor scheduling [15, 16]. Abramson, Mills, and
Perkins [17] designed a train time-table generation
algorithm using PGA in a distributed environment.

Genetic algorithms is a searching strategy in which an
initial number of ‘guesses’ is made to get an optimal
solution (the initial population). Each guess is evaluated

and assigned a ‘goodness’ value (the fitness function).
Those guesses with good values are selected and new
guesses are made by combining the existing guesses in a
particular fashion (crossover). The guesses are evolved to
the next generation on a survival of the fittest basis
(selecting), thereby the ‘good’ guesses are forwarded to the
next generation and the ‘bad’ guesses are not. Random
mutation is done to prevent the GA from getting struck in a
local maximum.

GAs have been used in static scheduling [8, 13], where the
schedule is generated before run-time and dynamic
scheduling [3, 9, 14], where the schedule is generated at
run-time based on the run-time characteristics which are
not possibly known beforehand. Dynamic scheduling is
more applicable to a real world environment.

Current Dynamic GA schedulers show near optimum
solutions in simulations [3, 9, 14]. But, all of the existing
approaches using sequential GAs take a long time to
converge [18]. We propose to parallelize the GA so that the
scheduling time is considerably reduced.

There are many ways to perform the parallelization as
discussed in section 2. Synchronous master slave
parallelization suits our proposed algorithm well because,

1. The population of the GA is fixed as 20, to
improve the speed. These types of GAs called
micro GAs are widely used for scheduling [3, 9]
and have been shown to be successful. For micro
GAs, multi-deme parallelization is not applicable.

2. The resulting PGA has the same characteristics of
the underlying GA but for the increase in speed.

3. This type of PGA does not make any assumptions
regarding the underlying processors, which makes
them ideal for distributed environment as
observed by [17].

Each chromosome can be processed (evaluated)
individually without considering the rest of the population.
Mathematical analysis of master slave parallelization of
GA has been done in [20].

4 The Proposed Parallel Genetic
algorithm

 The proposed parallel genetic algorithm involves a
master scheduler, which has the processor lists and the task
queue. The processors of the distributed system are
heterogeneous. The available network resources between
processors in the distributed system can vary over time.
The availability of each processor can vary over time
(processors are not dedicated can may have other tasks that
partially use their resources). Tasks are indivisible,

independent of all other tasks, arrive randomly, and can be
processed by any processor in the distributed system. The
master scheduler runs a sequential GA in which the fitness
function evaluation alone is done by slave processors.

When tasks arrive they are placed in the unscheduled task
queue. They tasks are taken in batches and scheduled.
Batch schedulers are shown to have higher performance
than immediate schedulers in [3]. When any processor is
idle, the processor asks for a task to perform and the task
scheduled for that processor (if any) is given to that
processor. All the task data are maintained only in the

Synchronous master slave parallelization is used to
evaluate the fitness function alone in a distributed fashion.
These are the steps in parallelization,

1) A master scheduler which is the processor in charge
of scheduling chooses the slaves. This choice is
based upon the communication overhead involved
and the computational potential of the slave
processor. In other words, a processor which is too
slow or too remote will not be used as a slave. The
number of slaves selected is almost 20, the population
size.

2) The master has the population of chromosomes for
which the fitness function is to be evaluated.

3) Each slave evaluates the fitness of a fraction (Fi) of
the population in the master scheduler and returns the
value.

a. ℓj=Pj/Lj where Lj denotes previously assigned
load in MFLOPS and Pj represents the current
processing power of the slave processor j.

b. T=∑ℓj ,for all chosen slave processors.

c. Fi= (ℓi/T)*100 for all i, chosen slave processors.

d. The fraction Fi of the total population is
assigned to the ith slave processor.

 This fraction calculation ensures that a relatively
slow slave processor does not become a bottleneck
for the entire scheduling task. This distribution of
task ensures that all slave processors are utilized
efficiently. The slave processors need not be
dedicated to the scheduling alone as their previous
loads are also taken into account.

4) After partitioning the population into fractions, the
slave processors receive their fraction of
chromosomes one at a time, evaluate and return the
result to the master. This approach is efficient
because, it limits the data transfer. In a distributed

environment, the slaves may leave the system at any
time. So the chromosomes are transferred only just
before the calculation is to be performed.

The above algorithm has exactly the same properties as a
sequential GA, but executes faster. The Pseudo code for
the underlying sequential genetic algorithm is shown in
figure 1.

Encode the chromosome.

Initialize the population (randomize)

do {

Stochastic sampling with partial replacement selection

Cycle crossover

Mutation: randomize and rebalancing

}while(stopping conditions not met)

Return best individual

Figure 1. Pseudo code for genetic algorithm

This genetic algorithm is an extension of the genetic
algorithm proposed by Page [3]. Each step in the GA is
explained in detail.

4.1 Encoding the Chromosome
 Each task in the batch has a unique identification
number. The total number of tasks in the batch is N and
total number of processors in M. The unique identification
task number of all the tasks allocated to a processor is
encoded in the chromosome with -1 being used to delimit
the different processor queues.

Figure 2: A sample chromosome

The sample chromosome in figure 2 has a batch size of 5
tasks with 3 processors. This chromosome represents the
following task allocation.

Processor
s

Tasks

1 2,3

2 1

3 5,4

Table 1: Task Allocation

4.2 Fitness Function
 A fitness function computes a single positive integer
to represent how good the schedule is. We use relative
error to generate the fitness values. The fitness of each
individual in the population is calculated using
synchronous master slave parallelization,in other words, by
this function itself is computed by the slave processors.
Previously assigned, but unprocessed, load for each
processor is considered by calculating the finishing time of
a processor j. δi = (Aj/Pj), where Aj denotes the previously
assigned load, measured in MFLOPs, and Pj is the current
processing power in Mflop/s of processor j. The current
load of each processor is calculated,

1 1
[() /] (,)

n n

j i j j c
i i

L t p i jδ
= =

= + + Γ∑ ∑

where ti is the processing requirements of task i in the
batch (in MFLOPs) and n is the total number of tasks
assigned to the processor j. ЃC(i,j) is the communication
time for the ith task in the jth processor.

The mean value of Lj for all the processors is given as

1
/

M

j
j

L Mμ
=

=∑

The relative load imbalance error of individual i is given as

2

1

M

i j
j

E Lμ
=

= −∑

This Error value denotes how unbalanced the schedule is.
For instance, if all the tasks are assigned to only one
processor while the others are idle, this error value will be
very large. Minimizing the error value ensures that
schedules which utilize more processors at the same time
(increase parallelization) will be consider fitter schedules.

The fitness value of individual i is
()()max max 0.001 max /i i iF span E= − + ×

 where,

 max is the maximum of all finishing times.

 maxspani is the largest task completion time among all the
processors.

The maxspan is nothing but the execution time of the
resulting schedule which is to be reduced. This value is
reduced from the maximum possible execution time.This
value could become zero at some cases. To avoid this
1/1000th of the max time is added to the numerator. A
larger value of F indicates a better or fitter schedule.

4.3 Communication Time
 The communication time ЃC(i,j) is calculated as
follows :

Time taken in seconds for execution of ith task on the jth
processor

T (i, j) = t (i)/P (j),

Communication cost in seconds/bits for ith task on the jth
processor

C (i, j) = [R (i, j) – T (i, j)] / S (i),

where R (i, j) is the round trip time for the ith task and S(i)
is the size in bits of the ith task.

Predicted Communication cost in seconds/bits for ith task
on the jth processor

τC (i, j) = [C(i-1,j) + τC (i-1,j) * (i-2)] / (i-1),

 i>=2 and τC (0,j) = 0.

Factor ά = [τC (i, j) - τC (i-1,j)] / τC (i-1,j)

Therefore the Communication time in seconds is

ЃC(i,j) = ά * T(i-1,j) + (1- ά) *[τC (i,j)*S(i)]

4.4 Stochastic Sampling with partial
replacement selection

 In a standard weighted roulette wheel selection
algorithm, the selection is totally based on the fitness
function. The chromosomes are assigned slots in the
roulette wheel based on their relative fitness function
values. The roulette wheel is spun N times to select N
chromosomes. Stochastic sampling with partial
replacement selection is a simple extension of the roulette
wheel selection in which the sector assigned for a
particular chromosome is reduced if the chosen

chromosome has a fitness value less than the average
fitness value. This increases the survival rate of the fitter
solutions when compared to standard roulette wheel
selection.

4.5 Cycle Crossover
 Cycle crossover [20] is a crossover operator which
applies to permutation encoding schemes which need to
preserve both the allele value and the allele order of the
gene. This operator ensures that, the two offspring will
have their gene values taken from the same value and
position of either of their parents. This ensures that the
properties of the parents are carried over to the children
there by making fitter children possible.

Parents

Children

The above example uses the randomized locus for start of
the start of the cycle as the first position. The cycle formed
is 2-4-3-2.The 5 and 1 of the parents, which are not part of
the cycle, are swapped to get the resulting children.

4.6 Swapping Mutation
An individual in the population is randomly selected

and any two tasks in that chromosome are randomly
selected and swapped. This approach ensures that all the
solutions in the search space are more thoroughly
examined.
4.7 Stopping Conditions
 A maximum of 1000 evolutions are used. The fitness
values of the chromosomes obtained after 1000 evolutions
did not show considerable improvement. The GA will also
stop evolving if one of the processors becomes idle, in
which case it will return the best schedule found so far.

5 Experimental Results
5.1 Setup
 We construct a simulation and evaluation
environment to evaluate a PGA based Dynamic Scheduling
Algorithm for a heterogeneous distributed system. We

simulated our algorithm on java platform with one node
acting as a master scheduler and one to six slave
processors, which are chosen by the master scheduler
based on proximity and processor efficiency. The fitness
function evaluation class is installed on all the slave
processors and PPGA algorithm is installed in the master
scheduler. The input consists of tasks whose sizes are
uniformly distributed between 10 and 1000 MFLOPS.

5.2 Tests
 We compare our scheduler with two other GA based
schedulers, Page [3], and Zomaya [9] and evaluate the
results using two different metrics, namely, maxspan and
time required to calculate the best schedule. Maxspan is the
total execution time of a schedule. Time required to
calculate the best schedule is required here as a result of
scheduler efficiency consideration. Mathematical Analysis
of the master slave parallelization of GA has been done in
Cantu-Paz [20].

0

200

400

600

800

1000

1200

10 30 50 70 90

Batch Size

Ti
m

e(
10

00
th

 o
f a

 S
ec

) 0 Slave

1 Slave

2 Slaves

3 Slaves

4 Slaves

5 Slaves

6 Slaves

Figure 3: Comparison of Scheduling Times

The average execution time of the proposed algorithm was
350ms as opposed to 680 and 830ms for algorithms
proposed in [9] and [3] respectively. The average maxspan
of the best schedule from the proposed algorithm was
4200ms, similar as in [3] and considerably lesser than [9]
which is 6200ms. In figure 3 we illustrate the decrease in
time for finding the optimal schedule by increasing the
slave processors from 1 to 6 for varying batch sizes.

6 Conclusion
A scheduling algorithm has been developed to schedule
heterogeneous tasks onto heterogeneous processors on a
distributed environment. It provides near-optimal schedules
and adapts to varying processing resources and
communication costs. The algorithm uses a dedicated
master scheduler for centralized scheduling. It uses slave
processors (which are not dedicated to scheduling) to
parallelize the GA and thereby speed up the result. Genetic
Algorithms are powerful but usually suffer from longer
scheduling time which is reduced in our algorithm due to
the parallelization of the fitness evaluation, the most CPU
intensive task.

According to our simulation results, the proposed
algorithm not only obtains similar performance as the
original genetic algorithm, but also spends less time doing
the scheduling. This feature also makes the proposed
algorithm to be more scalable and extends its practicability.

The proposed algorithm uses a straightforward encoding
scheme and generates a randomized initial population. The
fitness function uses the maxspan, the balance of load
among the processors and the communication costs while
evaluating the schedules. Stochastic sampling with partial
replacement selection, an extension of the roulette wheel
selection, is used to increase the possibility of survival of
the fitter solutions. Cycle cross over preserves the
characteristics of the parent chromosomes in the children
there by leading to exploration of search space. Random
swapping is done to prevent the GA to get struck in a local
maximum.

4 References
[1] GOLDBERG D. E., Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley,
Reading, MA, 1989.

[2] M Nowostawski, R Poli, Parallel Genetic Algorithm
Taxonomy, - 3rd International Conference on Knowledge-
Based Intelligent Information Engineering Systems 1999.

[3] AJ Page, TJ Naughton Dynamic task scheduling
using genetic algorithms for heterogeneous distributed
computing, - Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium
(IPDPS’05).

[4] M Golub, S Kasapovic Scheduling Multiprocessor
Tasks with Genetic Algorithms, - Applied Informatics-
Proceedings- 2002.

[5] Tao Yang and Apostolos Gerasoulis, “DSC: Scheduling
Parallel Tasks on an Unbounded Number of Processors”,

IEEE Transactions on Parallel and Distributed Systems,
Vol. 5, No. 9, pp. 951-967, Sep. 1994.

[6] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen,
and R. F. Freund. Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems.
Journal of Parallel and Distributed Computing, 59(2):107–
131, November 1999.

[7] A. Y. Zomaya, M. Clements, and S. Olariu. A
framework for reinforcement-based scheduling in parallel
processor systems. IEEE Transactions on Parallel and
Distributed Systems, 9(3):249–260, March 1998.

[8] E. Hou, N. Ansari, and H. Ren. A genetic algorithm for
multiprocessor scheduling. IEEE Transactions on Parallel
and Distributed Systems, 5(2):113–120, February 1994.

[9] A. Y. Zomaya and Y.-H. Teh. Observations on using
genetic algorithms for dynamic load-balancing. IEEE
Transactions on Parallel and Distributed Systems,
12(9):899–911, September 2001.

[10] Sean Luke, “Genetic programming produced
competitive soccer softbot teams for robocup97,” in
Genetic Programming 1998: Proceedings of the Third
Annual Conference, John R. Koza, Wolfgang Banzhaf,
Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David
B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba,
and Rick Riolo, Eds., University of Wisconsin, Madison,
Wisconsin,USA, 22-25 July 1998, pp. 214–222.

[11] E Cantu-Paz ,A survey of parallel genetic algorithms,
Calculateurs Paralleles, Reseaux et Systems Repartis, 1998

[12] Mariusz Nowostawski, “Parallel genetic algorithms
in geometry atomic cluster optimisation and other
applications,” M.S. thesis, School of Computer
Science,The University of Birmingham, UK, September
1998,http://studentweb.cs.bham..ac.uk/˜mxn/gzipped/mpga
-v0.1.ps.gz.

[13] I. Ahmad, Y.-K. Kwok, I. Ahmad, and M. Dhodhi.
Scheduling parallel programs using genetic algorithms. In
A. Y. Zomaya, F. Ercal, and S. Olariu, editors, Solutions to
Parallel and Distributed Computing Problems, chapter 9,
pages 231–254. John Wiley and Sons, New York, USA,
2001.

[14] A. Y. Zomaya, C. Ward, and B. Macey. Genetic
scheduling for parallel processor systems: comparative
studies and performance issues. IEEE Transactions on
Parallel and Distributed Systems, 10(8):795–812, August
1999.

[15] Moore, M., An Accurate and Efficient Parallel
Genetic Algorithm to Schedule Tasks on a Cluster, IPDPS,
2003.

[16] Moore, M., Parallel Genetic Algorithms to Find
Near Optimal Schedules for Tasks on Multiprocessor
Architectures, Communicating Process Architectures, IOS
Press, 2001, pgs, 27-36.

[17] Abramson D., Mills G., Perkins S., Parallelisation of
a genetic algorithm for the computation of efficient train
schedules Proceedings of the 1993 Parallel Computing and
Transputers Conference, p. 139–149, 1993.

[18] Yi-Hsuan Lee and Cheng Chen, A Modified Genetic
Algorithm for Task Scheduling in Multiprocessor Systems,
Taiwan: National Chiao Tung University, 2003.
http://parallel.iis.sinica.edu.tw/cthpc2003/papers/CTHPC2
003-18.pdf

[19] I.M. Oliver, D.J. Smith and J.R.C. Holland (1987),
Study of Permutation Crossover Operators on the TSP,
Genetic Algorithms and Their Applications: Proceedings of
the Second International Conference, 224-230.

[20] Designing efficient master-slave parallel genetic
algorithms E Cantu-Paz, Genetic Programming 1998:
Proceedings of the Third Annual Conference, July 22-25,
1998

