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Research Statement

Over 90% of the data available in the world has been generated in the last two years [1]. ‘Big Data’
analytics has become the next hot topic for most companies - from Financial institutions to Technology
companies to Service providers. Over the last 7 years I have been working on such Big Data problems:

• Scientific Data: During my tenure at the Scientific Data Management (SDM) center [2], I worked
on creating and managing the provenance of terabytes of data generated by physicists, climate
scientists, and underground water researchers.

• Operational Data: My dissertation research was related to analyzing hundreds of gigabytes of log files
that were generated by the Virtual Computing Lab, a cloud computing infrastructure that served
over 30,000 users, in order to determine the run time operational profile. More recently, during
my tenure as a Post Doc at Queen’s University, I have been working with industrial researchers at
BlackBerry on analyzing high velocity data generated by large software projects at run time, for
performance analysis.

• Ultra Large Repositories of Software: My current work is in collaboration with industrial researchers
at Avaya Labs (formerly Bell Labs) and Microsoft Research on analyzing ultra large repositories
with millions of Open Source Software (OSS) projects. I also collaborate with academic researchers
in Europe (ITU Copenhagen and Leipzig University) on analyzing the rating system and revenue
models of Android Apps, by mining several versions of over 100,000 apps in the Google Play app
store.

More generally, I have focussed on analyzing Big Data from Software Systems for solving Software En-
gineering (SE) problems. In the remainder of this statement, I present my motivation for studying Big
Data, what I have found so far, and what my vision for this area is.

Motivation
Software Engineering (SE) research over the past few decades has identified and attempted to solve a

variety of issues pertaining to the development of software. Increasingly, empirical studies on a collection
of software projects (between 5 and 10), have been able to shed light on current development, and main-
tenance practices of software engineers. However, these studies often face the threat of ‘Generalizability’,
since only a limited set of projects have been examined. Therefore, the conclusions of these studies may
only be applicable to a limited set of software projects. For example, a conclusion about more complex
code having more defects in the research study by Zimmermann et al. [3], which was carried out on the
dataset from the Eclipse IDE, may only be applicable to large Java-based IDEs. One solution to this
problem is to replicate studies to ensure that conclusions are consistent, as in the case of the example
above, where the conclusions were confirmed by several other studies. Another solution is to provide the
context in which the conclusions are applicable, again as in the example we presented above, where the
context of large Java-based IDEs was made explicit in the title (‘Predicting Defects for Eclipse’). For ei-
ther solution, the SE community needs an approach to quantify and place in context the generalizability
of case study conclusions.

Hence, along with my collaborators at Microsoft Research [4] (which was published at the 9th joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2013), one of the SE research communities top venues),
we looked at ways to measure the diversity and representativeness of the case studies in a research project.
We proposed a metric called ‘Coverage’ to quantify generalizability. This metric can also be used to place
current studies in context, thereby enabling software practitioners to choose the results that are most
appropriate to their software project. In this research, we demonstrate our approach by measuring the
coverage of the research papers from the past two years of ICSE and FSE (the two top SE conferences)
against a universe of open source software projects collected from Ohloh, an online repository of meta-
data on such projects. We find that although the coverage is reasonable in certain papers, there is a lot
of room for improvement.

Therefore even though studies on a small set of cases are important in any research area, complemen-
tary studies that look at entire ecosystems of software projects are needed as well. Hence, the core of my
research is related to mining Big Data with respect to SE (Ultra large repositories of software projects),
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and analyzing different combinations of software repositories for different stakeholders. By leveraging
data from an ultra large number of software projects, we are able to (a) make conclusions that are far
more generalizable, (b) identify relationships between software projects in an ecosystem, and (c) identify
recurring patterns amongst software projects.

Current Research
Hence, for the past 7 years I have worked on using Big Data in SE to address the concerns of different

stakeholders of software systems such as software maintainers and software operators. Some of the
projects that I am currently pursuing are as follows:

• Software Maintainers: Bug localization in software is used by software maintainers to identify the
source file that is most likely the best match for fixing the bug in the corresponding bug report. One
recent approach for bug localization is to use Information Retrieval (IR) techniques to calculate the
textual similarity between source files and bug reports. However, these IR techniques have many
configurable parameters. Currently, most of the research studies select a particular configuration
without examining the influence it has on the results. In our recent study [5] (which was accepted
for publication in the IEEE Transactions on Software Engineering, the SE community’s flagship
journal), we examine thousands of configurations in order to detect the best set of parameters for
IR based bug localization. We also use an ensemble of configurations to improve the accuracy of
bug localization.

Another software maintenance issue faced by software maintainers is that resources available for
ensuring software quality are limited, and allocating them efficiently is a difficult problem. Often
linear statistical models on historical software data are used by managers to allocate resources in
a software project. However, in the past such models were built on the entire software dataset.
In our study, we looked at improving the performance of the linear models built on SE data by
using local models (built on a subset of the data) instead of global models (built on the whole
dataset) [6]. We found that even though local models perform better than global models, the
amount of detail available in the local models can overwhelm a manager. Hence we proposed that
the managers use a hybrid approach - a global model with local considerations. This study won the
‘Best Paper’ award at the 9th Working Conference on Mining Software Repositories (MSR 2012),
and was invited for a journal extension at the Empirical Software Engineering journal.

In addition to advanced modeling techniques, we leverage novel software metrics to identify source
files that are most likely to have post release defects, in order to address the resource allocation
problem. In the first study, we leverage cohesion metrics derived from the textual topics in source
files [7]. We find that topic based cohesion metrics complement the traditional software metrics in
identifying defect-prone files.

In a second study (which has been accepted at Empirical Software Engineering, a top journal for
empirical studies), we hypothesize that software developers include more logging statements in
source files that they believe will be in the execution path of a software crash at run time [8]. We
find that, indeed the developers intuition of including the additional logging statements pays off,
since these files had more defects post release. We evaluated this on Hadoop, an application that
is used on highly parallel systems for distributed processing.

• Software Operators: The execution logs from large scale systems contain hundreds of gigabytes of
run time information. This information can be used to identify the operational profile of a system,
and the possible root causes of functional and performance issues among other things. In one
study [9], we used the Suffix Array data-structure to identify the frequency of patterns (of varying
lengths) in linear time for the purpose of operational profiling. Thus we could scale our approach
easily to the gigabytes of logs (with millions of log lines) that were generated by a Cloud Computing
Infrastructure called Virtual Computing Lab that served the IT needs of over 30,000 users.

In a second study we examined the issues relating to performance problems in multi user systems.
Often when there is a performance issue that is found by the performance engineers (specialized
software operators) in the load test of software projects, they have to manually associate millions of
entries from thousands of resource counters (like CPU and Memory usage) to millions of execution
log lines in order to debug. In our study [10] we proposed an automatic approach to link the two
data sources (resource counters and execution logs), so that the performance engineer, in order to
debug, only needs to look at a small subset of the log lines when a performance issue occurs. We
evaluated our approach on an ultra large scale industrial software project at BlackBerry, and an
open source benchmark project.

2



Research Vision
Data has always been used in every company irrespective of its domain to improve the operational

efficiency and the products themselves. However, analyzing and extracting information from Big Data
is the next revolution in technology [11], since previously unknown nuggets of information are now
made visible. Likewise in software engineering, data collected about the development of software, the
operation of the software in the field, and the users feedback on a software have been used before.
However, collecting and analyzing this information across hundreds of thousands or millions of software
projects gives us the unique ability to reason about the ecosystem at large, and software in general.

At no time in history has there been easier access to extremely powerful computational resources as it
is today, thanks to the advances in cloud computing, both from the technology and business perspectives.
Therefore, it is easier today than ever before to analyze big data. As part of my future research, I would
like to look at Big Data in Software Engineering from two complementary dimensions.
1. Research Opportunities: Over the last few years, both mobile apps and open source distributed
development have become hugely popular in the software universe. There are over 700,000 Android
apps, and over 900,000 iOS apps to date, with billions of dollars at stake. By analyzing the entire
ecosystem of apps, we can identify patterns across these apps. For example, we (in collaboration with
École Polytechnique de Montréal, ITU Copenhagen and Leipzig University), looked at over 100,000 apps
in the Android market and were able to identify patterns in the ratings of these apps, as well as how
the developers use advertisement libraries in these apps [12]. I would like to continue down this line and
look at what makes an app successful, how to make the app more visible in the app market, and how to
maximize revenue.

On the open source distributed development front, services such as Github have greatly aided in
accelerating the number of software projects. As of today, Github alone boasts of hosting over 6.9 million
repositories. Any research on such large repositories could potentially impact millions of developers. By
analyzing these millions of repositories, we are able to understand the behaviour among developers
who collaborate on OSS projects from distributed physical locations. Some of these results may even
translate to outsourced corporate software projects. Currently, in collaboration with Avaya Research
labs (formerly Bell Labs), we are looking into how the choice of a software build system technology
impacts the build maintenance effort by analyzing 800,000 open source repositories in Github.
2. Research Challenges: Even though there are plenty of opportunities for pursuing research on Big
Data in Software Engineering, there are a few challenges that needs to be addressed. One such challenge
is the proper application of Data Analysis and Statistical Techniques, especially due to the scale and
nature of data (often SE data can be highly skewed). To this end, I am working with Audris Mockus, a
world-renowned researcher on empirical software engineering from Avaya Research Labs, to identify and
document the best statistical practises for software engineering researchers. We gave a tutorial about this
topic at the 9th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE 2013) titled Statistics in Software
Engineering: Pitfalls and Good Practices [13]. This tutorial was attended by over 25 people. Several
educators requested the slides and other material for their graduate level SE courses.

Another challenge is that of filtering noise from datasets. For example, Github does not distinguish
between student projects and user-targeted software. If one aims to study developers, such student
repositories need to be filtered out. Another challenge is creating mathematical and statistical solutions
for analyzing large datasets that scale linearly. Both time and space constraints are very critical when
the analysis is in such a large scale. Such solutions for Big Data Challenges in SE have rich research
potential, as they can be transferred to Big Data analysis in other research areas as well (and vice versa).

Overall, the field of software engineering research is evolving very quickly. This is in part due to the
ubiquitous nature of software. Thus, we as software engineering researchers are at the cusp of redefining
“Software Engineering Research”. Even though the field of computer science has been collaborating with
medical experts (Biomedical Computing), basic science researchers (Computational Physics, Chemistry,
and Math), and financial experts (Trend analysis and forecasting), software engineering research has
had limited overlap. Each of the applications in these fields are highly critical, and their quality is
paramount. The lessons learnt from decades of software engineering can therefore have a great impact.
However, we first need to evaluate such theories on a large sample of software - Big Data in Software
Engineering. Therefore I would like to work on these highly inter-disciplinary problems along with
researchers, both from other areas of computer science, and from other fields of science and engineering,
to leverage the software engineering dimension for improving the applications from the perspective of
different stakeholders.
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